[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[modeller_usage] Enc: ModellerError: read_al_373E> Protein specified in ALIGN_CODES(i) was not found in the alignment file; ALIGN_CODES( 4) = G8EW14.fasta



 Dear users,
I'd tried to generate 5 models from Modeller v9.15 trough my model-multi.py script [1] and the program gave me this error:
guest@labimm-118:~/Documents/charilma/CpLAN$ mod9.15 model-multi.py
Could not find platform independent libraries <prefix>
Could not find platform dependent libraries <exec_prefix>
Consider setting $PYTHONHOME to <prefix>[:<exec_prefix>]
'import site' failed; use -v for traceback
Traceback (most recent call last):
  File "model-multi.py", line 48, in ?
    a.make()
  File "/usr/lib/modeller9.15/modlib/modeller/automodel/automodel.py", line 110, in make
    self.homcsr(exit_stage)
  File "/usr/lib/modeller9.15/modlib/modeller/automodel/automodel.py", line 475, in homcsr
    aln = self.read_alignment()
  File "/usr/lib/modeller9.15/modlib/modeller/automodel/automodel.py", line 465, in read_alignment
    aln.append(file=self.alnfile, align_codes=codes)
  File "/usr/lib/modeller9.15/modlib/modeller/alignment.py", line 79, in append
    allow_alternates)
_modeller.ModellerError: read_al_373E> Protein specified in ALIGN_CODES(i) was not found in the alignment file; ALIGN_CODES(       4) =  G8EW14.fasta
 
As I'm sending my alignment file [2] and my template file [3], I wonder if there is anyone that could help me to circumvent this error.
Regards.

[1] model-multi.py

# -*- coding: utf-8 -*-
# File: model-multi.py
# Reading the ali file and generating 5 model

from modeller import *
from modeller.automodel import *
from modeller.scripts import complete_pdb

log.verbose()
env = environ()

# Give less weight to all soft-sphere restraints:
env.schedule_scale = physical.values(default=1.0, soft_sphere=0.7)

#Considering heteroatoms and waters molecules
env.io.hetatm = env.io.water = True
# Directories with input atom files:
env.io.atom_files_directory = './:../atom_files'
env.libs.topology.read(file='$(LIB)/top_heav.lib')
env.libs.parameters.read(file='$(LIB)/par.lib')


# Modelling 'sequence' with file.ali
a = automodel(env, alnfile='CpLANcab.ali',
              knowns=('4LXJ','4K0F','4WMZ'),
              sequence=('G8EW14.fasta'),
#              assess_methods=(assess.DOPE,
#                               assess.normalized_dope,
#                               assess.GA341))              
              assess_methods= (assess.DOPE, assess.normalized_dope, assess.GA341)
              )
# Generating 5 models
a.starting_model = 1
a.ending_model = 5

# Very thorough Variable Target Function Method (VTFM) optimization:
a.library_schedule = autosched.slow
a.max_var_iterations = 300

# Thorough MD optimization:
a.md_level = refine.slow

# Repeat the whole cycle 2 times and do not stop unless obj.func. > 1E6
a.repeat_optimization = 2
a.max_molpdf = 1e6


a.make()

# Get clusters
a.cluster(cluster_cut=1.00)
# END OF MODEL CONSTRUCTION


# PRINT RESULTS
# Open a file
fo = open("model-multi.out", "w")

# Get a list of all successfully built models from a.outputs
ok_models = filter(lambda x: x['failure'] is None, a.outputs)

# Printing out a summary of all successfully generated models
print >> fo, '\n>> Summary of successfully produced model'
fields = [x for x in ok_models[0].keys() if x.endswith(' score')]
fields.sort()
fields = ['molpdf'] + fields
header = '%-25s ' % 'Filename' + " ".join(['%14s' % x for x in fields])
print >> fo, header
print >> fo, '-' * len(header)
for mdl in ok_models:
    text = '%-25s' % mdl['name']
    for field in fields:
    if isinstance(mdl[field], (tuple, list)):
        text = text + ' %14.5f' % mdl[field][0]
    else:
        text = text + ' %14.5f' % mdl[field]
    print >> fo, text
print >> fo, ''

# Printing top model results
print >> fo, '>> Top model results:'
 
# Rank models by molpdf score
key = 'molpdf'
ok_models.sort(lambda a,b: cmp(a[key], b[key]))
# Get top model - molpdf
m = ok_models[0]
print "Top model_molpdf: %s (molpdf %.3f)" % (m['name'], m[key])
print >> fo, 'molpdf: ', m[key], '(file: ', m['name'], ')'

# Rank models by DOPE score
key = 'DOPE score'
ok_models.sort(lambda a,b: cmp(a[key], b[key]))
# Get top model - DOPE
m = ok_models[0]
print "Top model_DOPE: %s (DOPE score %.3f)" % (m['name'], m[key])
print >> fo, 'DOPE score: ', m[key], '(file: ', m['name'], ')'

# Rank models by normalized DOPE score
key = 'GA341 score'
ok_models.sort(lambda a,b: cmp(a[key], b[key]))
# Get top model - normalized DOPE
m = ok_models[0]
print "Top model_GA341: %s (GA341 score %.3f)" % (m['name'], m[key][0])
print >> fo, 'GA341 score: ', m[key][0], '(file: ', m['name'], ')'

# Rank models by normalized DOPE score
key = 'Normalized DOPE score'
ok_models.sort(lambda a,b: cmp(a[key], b[key]))
# Get top model - normalized DOPE
m = ok_models[0]
print "Top model_nDOPE (z): %s (Normalized DOPE score %.3f)" % (m['name'], m[key])
print >> fo, 'Normalized DOPE score: ', m[key], '(file: ', m['name'], ')'

# Read a model previously generated by Modeller's automodel class
mdl = complete_pdb(env, './cluster.opt')

# Select all atoms in the first chain
atmsel = selection(mdl)

score = atmsel.assess_dope()
zscore = mdl.assess_normalized_dope()
score2 = mdl.assess_ga341()

# Printing assess results
print >> fo, '\n>> Cluster results:'

fo2 = open("cluster.opt", "r")
lines = [ i.rstrip() for i in fo2.readlines()]
# 3rd line
print >> fo, lines[1], '(molpdf)'

print >> fo, 'DOPE score: ', score
print >> fo, 'GA341 score: ', score2[0]
print >> fo, 'Normalized DOPE score: ', zscore

# Close opened file
fo.close()
#END OF PRINT RESULTS


[2] CpLANcab.ali
>P1;4LXJ
structureX:4LXJ:   6 :A:+715 :A:MOL_ID  1; MOLECULE  LANOSTEROL 14-ALPHA DEMETHYLASE; CHAIN  A; SYNONYM  CYPLI, CYTOCHROME P450 51, CYTOCHROME P450-14DM, C P450-LIA1, STEROL 14-ALPHA DEMETHYLASE; EC  1.14.13.70; ENGINEERED  YES:MOL_ID  1; ORGANISM_SCIENTIFIC  SACCHAROMYCES CEREVISIAE; ORGANISM_COMMON  BAKER'S YEAST; ORGANISM_TAXID  4932; GENE  ERG11, CYP51, YHR007C; EXPRESSION_SYSTEM  SACCHAROMYCES CEREVISIAE; EXPRESSION_SYSTEM_TAXID  4932: 1.90: 0.20
MSATKSIVGEALEYVNIGLSH-FLALPLAQRISLIII----IPFIYNIVWQLLYSLRKDRPPLVFYWIPWVGSAV
VYGMKPYEFFEECQKKYGDIFSFVLLGRVMTVYLGPKGHEFVFNAKLADVSAEAAYAHLTTPVFGKGVIYDCPNS
RLMEQKKFVKGALTKEAFKSYVPLIAEEVYKYFRDSKNFRLNERTTGTIDVMVTQPEMTIFTASRSLLGKEMRAK
LDTDFAYLYSDLDKGFTPINFVFPNLPLEHYRKRDHAQKAISGTYMSLIKERRKNNDIQDRDLIDSLMKNSTYKD
GVKMTDQEIANLLIGVLMGGQHTSAATSAWILLHLAERPDVQQELYEEQMRVL---DGGKKELTYDLLQEMPLLN
QTIKETLRMHHPLHSLFRKVMKDMHVP--------NTSYVIPAGYHVLVSPGYTHLRDEYFPNAHQFNIHRWNND
SASS------YSVGEEVDYGFGAISKGVSSPYLPFGGGRHRCIGEHFAYCQLGVLMSIFIRTLKWHYPEGKTVPP
PDFTSMVTLPTGPAKIIWEKRNPEQKIGGRH---HH*

>P1;4K0F
structureX:4K0F:   6 :A:+655 :A:MOL_ID  1; MOLECULE  LANOSTEROL 14-ALPHA DEMETHYLASE; CHAIN  A; ENGINEERED  YES:MOL_ID  1; ORGANISM_SCIENTIFIC  SACCHAROMYCES CEREVISIAE; ORGANISM_COMMON  BAKER'S YEAST; ORGANISM_TAXID  307796; STRAIN  YJM789; GENE  ERG11, SCY_2394; EXPRESSION_SYSTEM  SACCHAROMYCES CEREVISIAE; EXPRESSION_SYSTEM_TAXID  4932: 2.19: 0.20
MSATKSIVGEALEYVNIGLSH-FLALPLAQRISLIII----IPFIYNIVWQLLYSLRKDRPPLVFYWIPWVGSAV
VYGMKPYEFFEECQKKYGDIFSFVLLGRVMTVYLGPKGHEFVFNAKLADVSAEAAYAHLTTPVFGKGVIYDCPNS
RLMEQKKFVKGALTKEAFKSYVPLIAEEVYKYFRDSKNFRLNERTTGTIDVMVTQPEMTIFTASRSLLGKEMRAK
LDTDFAYLYSDLDKGFTPINFVFPNLPLEHYRKRDHAQKAISGTYMSLIKERRKNNDIQDRDLIDSLMKNSTYKD
GVKMTDQEIANLLIGVLMGGQHTSAATSAWILLHLAERPDVQQELYEEQMRVL---DGGKKELTYDLLQEMPLLN
QTIKETLRMHHPLHSLFRKVMKDMHVP--------NTSYVIPAGYHVLVSPGYTHLRDEYFPNAHQFNIHRWNND
SASS------YSVGEEVDYGFGAISKGVSSPYLPFGGGRHRCIGEHFAYCQLGVLMSIFIRTLKWHYPEGKTVPP
PDFTSMVTLPTGPAKIIWEKRNPEQKIGGRHHHHHH*

>P1;4WMZ
structureX:4WMZ:   7 :A:+684 :A:MOL_ID  1; MOLECULE  LANOSTEROL 14-ALPHA DEMETHYLASE; CHAIN  A; ENGINEERED  YES:MOL_ID  1; ORGANISM_SCIENTIFIC  SACCHAROMYCES CEREVISIAE; ORGANISM_COMMON  BAKER'S YEAST; ORGANISM_TAXID  307796; STRAIN  YJM789; GENE  ERG11, SCY_2394; EXPRESSION_SYSTEM  SACCHAROMYCES CEREVISIAE; EXPRESSION_SYSTEM_TAXID  4932; EXPRESSION_SYSTEM_STRAIN  AD2DELTA: 2.05: 0.20
MSATKSIVGEALEYVNIGLSH-FLALPLAQRISLIII----IPFIYNIVWQLLYSLRKDRPPLVFYWIPWVGSAV
VYGMKPYEFFEECQKKYGDIFSFVLLGRVMTVYLGPKGHEFVFNAKLADVSAEAAYAHLTTPVFGKGVIYDCPNS
RLMEQKKFVKGALTKEAFKSYVPLIAEEVYKYFRDSKNFRLNERTTGTIDVMVTQPEMTIFTASRSLLGKEMRAK
LDTDFAYLYSDLDKGFTPINFVFPNLPLEHYRKRDHAQKAISGTYMSLIKERRKNNDIQDRDLIDSLMKNSTYKD
GVKMTDQEIANLLIGVLMGGQHTSAATSAWILLHLAERPDVQQELYEEQMRVL---DGGKKELTYDLLQEMPLLN
QTIKETLRMHHPLHSLFRKVMKDMHVP--------NTSYVIPAGYHVLVSPGYTHLRDEYFPNAHQFNIHRWNND
SASS------YSVGEEVDYGFGAISKGVSSPYLPFGGGRHRCIGEHFAYCQLGVLMSIFIRTLKWHYPEGKTVPP
PDFTSMVTLPTGPAKIIWEKRNPEQKIGGRHHHHHH*

>P1;G8EW14
sequence:G8EW14.fasta:::::::0.00: 0.00
MSAIIPQVQQLLGQVAQFFPPWFAALPTSLKVAIAVVGIPALIIGLNVFQQLCLPRKKDLPPVVFHYIPWFGSAA
YYGENPYKFLFECRDKYGDLFTFILMGRRITVALGPKGNNLSLGGKISQVSAEEAYTHLTTPVFGKGVVYDCPNE
MLMQQKKFIKSGLTTESLQSYPPMITSECEDFFTKEVGIS-PQKPSATLDLLKAMSELIILTASRTLQGKEVRES
LNGQFAKYYEDLDGGFTPLNFMFPNLPLPSYKRRDEAQKAMSDFYLKIMENRRKGESDHEHDMIENL-QSCKYRN
GVPLSDRDIAHIMIALLMAGQHTSSATSSWTLLHLADRPDVVEALYQEQKQKLGNPDGTFRDYRYEDLKELPIMD
SIIRETLRMHAPIHSIYRKVLSDIPVPPSLSAPSENGQYIIPKGHYIMAAPGVSQMDPRIWQDAKVWNPARWHDE
KGFAAAAMVQYTKAEQVDYGFGSVSKGTESPYQPFGAGRHRCVGEQFAYTQLSTIFTYVVRNFTLKLAVPK-FPE
TNYRTMIVQPNNPL-VTFTLRNAEVKQEV-------*

[3] G8EW14.fasta
>G8EW14:A|PDBID|CHAIN|SEQUENCE
MSAIIPQVQQLLGQVAQFFPPWFAALPTSLKVAIAVVGIPALIIGLNVFQQLCLPRKKDLPPVVFHYIPWFGSAAYYGEN
PYKFLFECRDKYGDLFTFILMGRRITVALGPKGNNLSLGGKISQVSAEEAYTHLTTPVFGKGVVYDCPNEMLMQQKKFIK
SGLTTESLQSYPPMITSECEDFFTKEVGISPQKPSATLDLLKAMSELIILTASRTLQGKEVRESLNGQFAKYYEDLDGGF
TPLNFMFPNLPLPSYKRRDEAQKAMSDFYLKIMENRRKGESDHEHDMIENLQSCKYRNGVPLSDRDIAHIMIALLMAGQH
TSSATSSWTLLHLADRPDVVEALYQEQKQKLGNPDGTFRDYRYEDLKELPIMDSIIRETLRMHAPIHSIYRKVLSDIPVP
PSLSAPSENGQYIIPKGHYIMAAPGVSQMDPRIWQDAKVWNPARWHDEKGFAAAAMVQYTKAEQVDYGFGSVSKGTESPY
QPFGAGRHRCVGEQFAYTQLSTIFTYVVRNFTLKLAVPKFPETNYRTMIVQPNNPLVTFTLRNAEVKQEV
Em Quinta-feira, 6 de Agosto de 2015 10:35, "" <> escreveu:




----- Mensagem encaminhada -----

You are not allowed to post to this mailing list, and your message has
been automatically rejected.  If you think that your messages are
being rejected in error, contact the mailing list owner at
." target="_blank" href="mailto:.">.

Dear users,


I'd tried to generate 5 models from Modeller v9.15 trough my model-multi.py script [1] and the program gave me this error:
guest@labimm-118:~/Documents/charilma/CpLAN$ mod9.15 model-multi.py
Could not find platform independent libraries <prefix>
Could not find platform dependent libraries <exec_prefix>
Consider setting $PYTHONHOME to <prefix>[:<exec_prefix>]
'import site' failed; use -v for traceback
Traceback (most recent call last):
  File "model-multi.py", line 48, in ?
    a.make()
  File "/usr/lib/modeller9.15/modlib/modeller/automodel/automodel.py", line 110, in make
    self.homcsr(exit_stage)
  File "/usr/lib/modeller9.15/modlib/modeller/automodel/automodel.py", line 475, in homcsr
    aln = self.read_alignment()
  File "/usr/lib/modeller9.15/modlib/modeller/automodel/automodel.py", line 465, in read_alignment
    aln.append(file=self.alnfile, align_codes=codes)
  File "/usr/lib/modeller9.15/modlib/modeller/alignment.py", line 79, in append
    allow_alternates)
_modeller.ModellerError: read_al_373E> Protein specified in ALIGN_CODES(i) was not found in the alignment file; ALIGN_CODES(       4) =  G8EW14.fasta
 
As I'm sending my alignment file [2] and my template file [3], I wonder if there is anyone that could help me to circumvent this error.
Regards.

[1] model-multi.py

# -*- coding: utf-8 -*-
# File: model-multi.py
# Reading the ali file and generating 5 model

from modeller import *
from modeller.automodel import *
from modeller.scripts import complete_pdb

log.verbose()
env = environ()

# Give less weight to all soft-sphere restraints:
env.schedule_scale = physical.values(default=1.0, soft_sphere=0.7)

#Considering heteroatoms and waters molecules
env.io.hetatm = env.io.water = True
# Directories with input atom files:
env.io.atom_files_directory = './:../atom_files'
env.libs.topology.read(file='$(LIB)/top_heav.lib')
env.libs.parameters.read(file='$(LIB)/par.lib')


# Modelling 'sequence' with file.ali
a = automodel(env, alnfile='CpLANcab.ali',
              knowns=('4LXJ','4K0F','4WMZ'),
              sequence=('G8EW14.fasta'),
#              assess_methods=(assess.DOPE,
#                               assess.normalized_dope,
#                               assess.GA341))              
              assess_methods= (assess.DOPE, assess.normalized_dope, assess.GA341)
              )
# Generating 5 models
a.starting_model = 1
a.ending_model = 5

# Very thorough Variable Target Function Method (VTFM) optimization:
a.library_schedule = autosched.slow
a.max_var_iterations = 300

# Thorough MD optimization:
a.md_level = refine.slow

# Repeat the whole cycle 2 times and do not stop unless obj.func. > 1E6
a.repeat_optimization = 2
a.max_molpdf = 1e6


a.make()

# Get clusters
a.cluster(cluster_cut=1.00)
# END OF MODEL CONSTRUCTION


# PRINT RESULTS
# Open a file
fo = open("model-multi.out", "w")

# Get a list of all successfully built models from a.outputs
ok_models = filter(lambda x: x['failure'] is None, a.outputs)

# Printing out a summary of all successfully generated models
print >> fo, '\n>> Summary of successfully produced model'
fields = [x for x in ok_models[0].keys() if x.endswith(' score')]
fields.sort()
fields = ['molpdf'] + fields
header = '%-25s ' % 'Filename' + " ".join(['%14s' % x for x in fields])
print >> fo, header
print >> fo, '-' * len(header)
for mdl in ok_models:
    text = '%-25s' % mdl['name']
    for field in fields:
    if isinstance(mdl[field], (tuple, list)):
        text = text + ' %14.5f' % mdl[field][0]
    else:
        text = text + ' %14.5f' % mdl[field]
    print >> fo, text
print >> fo, ''

# Printing top model results
print >> fo, '>> Top model results:'
 
# Rank models by molpdf score
key = 'molpdf'
ok_models.sort(lambda a,b: cmp(a[key], b[key]))
# Get top model - molpdf
m = ok_models[0]
print "Top model_molpdf: %s (molpdf %.3f)" % (m['name'], m[key])
print >> fo, 'molpdf: ', m[key], '(file: ', m['name'], ')'

# Rank models by DOPE score
key = 'DOPE score'
ok_models.sort(lambda a,b: cmp(a[key], b[key]))
# Get top model - DOPE
m = ok_models[0]
print "Top model_DOPE: %s (DOPE score %.3f)" % (m['name'], m[key])
print >> fo, 'DOPE score: ', m[key], '(file: ', m['name'], ')'

# Rank models by normalized DOPE score
key = 'GA341 score'
ok_models.sort(lambda a,b: cmp(a[key], b[key]))
# Get top model - normalized DOPE
m = ok_models[0]
print "Top model_GA341: %s (GA341 score %.3f)" % (m['name'], m[key][0])
print >> fo, 'GA341 score: ', m[key][0], '(file: ', m['name'], ')'

# Rank models by normalized DOPE score
key = 'Normalized DOPE score'
ok_models.sort(lambda a,b: cmp(a[key], b[key]))
# Get top model - normalized DOPE
m = ok_models[0]
print "Top model_nDOPE (z): %s (Normalized DOPE score %.3f)" % (m['name'], m[key])
print >> fo, 'Normalized DOPE score: ', m[key], '(file: ', m['name'], ')'

# Read a model previously generated by Modeller's automodel class
mdl = complete_pdb(env, './cluster.opt')

# Select all atoms in the first chain
atmsel = selection(mdl)

score = atmsel.assess_dope()
zscore = mdl.assess_normalized_dope()
score2 = mdl.assess_ga341()

# Printing assess results
print >> fo, '\n>> Cluster results:'

fo2 = open("cluster.opt", "r")
lines = [ i.rstrip() for i in fo2.readlines()]
# 3rd line
print >> fo, lines[1], '(molpdf)'

print >> fo, 'DOPE score: ', score
print >> fo, 'GA341 score: ', score2[0]
print >> fo, 'Normalized DOPE score: ', zscore

# Close opened file
fo.close()
#END OF PRINT RESULTS


[2] CpLANcab.ali
>P1;4LXJ
structureX:4LXJ:   6 :A:+715 :A:MOL_ID  1; MOLECULE  LANOSTEROL 14-ALPHA DEMETHYLASE; CHAIN  A; SYNONYM  CYPLI, CYTOCHROME P450 51, CYTOCHROME P450-14DM, C P450-LIA1, STEROL 14-ALPHA DEMETHYLASE; EC  1.14.13.70; ENGINEERED  YES:MOL_ID  1; ORGANISM_SCIENTIFIC  SACCHAROMYCES CEREVISIAE; ORGANISM_COMMON  BAKER'S YEAST; ORGANISM_TAXID  4932; GENE  ERG11, CYP51, YHR007C; EXPRESSION_SYSTEM  SACCHAROMYCES CEREVISIAE; EXPRESSION_SYSTEM_TAXID  4932: 1.90: 0.20
MSATKSIVGEALEYVNIGLSH-FLALPLAQRISLIII----IPFIYNIVWQLLYSLRKDRPPLVFYWIPWVGSAV
VYGMKPYEFFEECQKKYGDIFSFVLLGRVMTVYLGPKGHEFVFNAKLADVSAEAAYAHLTTPVFGKGVIYDCPNS
RLMEQKKFVKGALTKEAFKSYVPLIAEEVYKYFRDSKNFRLNERTTGTIDVMVTQPEMTIFTASRSLLGKEMRAK
LDTDFAYLYSDLDKGFTPINFVFPNLPLEHYRKRDHAQKAISGTYMSLIKERRKNNDIQDRDLIDSLMKNSTYKD
GVKMTDQEIANLLIGVLMGGQHTSAATSAWILLHLAERPDVQQELYEEQMRVL---DGGKKELTYDLLQEMPLLN
QTIKETLRMHHPLHSLFRKVMKDMHVP--------NTSYVIPAGYHVLVSPGYTHLRDEYFPNAHQFNIHRWNND
SASS------YSVGEEVDYGFGAISKGVSSPYLPFGGGRHRCIGEHFAYCQLGVLMSIFIRTLKWHYPEGKTVPP
PDFTSMVTLPTGPAKIIWEKRNPEQKIGGRH---HH*

>P1;4K0F
structureX:4K0F:   6 :A:+655 :A:MOL_ID  1; MOLECULE  LANOSTEROL 14-ALPHA DEMETHYLASE; CHAIN  A; ENGINEERED  YES:MOL_ID  1; ORGANISM_SCIENTIFIC  SACCHAROMYCES CEREVISIAE; ORGANISM_COMMON  BAKER'S YEAST; ORGANISM_TAXID  307796; STRAIN  YJM789; GENE  ERG11, SCY_2394; EXPRESSION_SYSTEM  SACCHAROMYCES CEREVISIAE; EXPRESSION_SYSTEM_TAXID  4932: 2.19: 0.20
MSATKSIVGEALEYVNIGLSH-FLALPLAQRISLIII----IPFIYNIVWQLLYSLRKDRPPLVFYWIPWVGSAV
VYGMKPYEFFEECQKKYGDIFSFVLLGRVMTVYLGPKGHEFVFNAKLADVSAEAAYAHLTTPVFGKGVIYDCPNS
RLMEQKKFVKGALTKEAFKSYVPLIAEEVYKYFRDSKNFRLNERTTGTIDVMVTQPEMTIFTASRSLLGKEMRAK
LDTDFAYLYSDLDKGFTPINFVFPNLPLEHYRKRDHAQKAISGTYMSLIKERRKNNDIQDRDLIDSLMKNSTYKD
GVKMTDQEIANLLIGVLMGGQHTSAATSAWILLHLAERPDVQQELYEEQMRVL---DGGKKELTYDLLQEMPLLN
QTIKETLRMHHPLHSLFRKVMKDMHVP--------NTSYVIPAGYHVLVSPGYTHLRDEYFPNAHQFNIHRWNND
SASS------YSVGEEVDYGFGAISKGVSSPYLPFGGGRHRCIGEHFAYCQLGVLMSIFIRTLKWHYPEGKTVPP
PDFTSMVTLPTGPAKIIWEKRNPEQKIGGRHHHHHH*

>P1;4WMZ
structureX:4WMZ:   7 :A:+684 :A:MOL_ID  1; MOLECULE  LANOSTEROL 14-ALPHA DEMETHYLASE; CHAIN  A; ENGINEERED  YES:MOL_ID  1; ORGANISM_SCIENTIFIC  SACCHAROMYCES CEREVISIAE; ORGANISM_COMMON  BAKER'S YEAST; ORGANISM_TAXID  307796; STRAIN  YJM789; GENE  ERG11, SCY_2394; EXPRESSION_SYSTEM  SACCHAROMYCES CEREVISIAE; EXPRESSION_SYSTEM_TAXID  4932; EXPRESSION_SYSTEM_STRAIN  AD2DELTA: 2.05: 0.20
MSATKSIVGEALEYVNIGLSH-FLALPLAQRISLIII----IPFIYNIVWQLLYSLRKDRPPLVFYWIPWVGSAV
VYGMKPYEFFEECQKKYGDIFSFVLLGRVMTVYLGPKGHEFVFNAKLADVSAEAAYAHLTTPVFGKGVIYDCPNS
RLMEQKKFVKGALTKEAFKSYVPLIAEEVYKYFRDSKNFRLNERTTGTIDVMVTQPEMTIFTASRSLLGKEMRAK
LDTDFAYLYSDLDKGFTPINFVFPNLPLEHYRKRDHAQKAISGTYMSLIKERRKNNDIQDRDLIDSLMKNSTYKD
GVKMTDQEIANLLIGVLMGGQHTSAATSAWILLHLAERPDVQQELYEEQMRVL---DGGKKELTYDLLQEMPLLN
QTIKETLRMHHPLHSLFRKVMKDMHVP--------NTSYVIPAGYHVLVSPGYTHLRDEYFPNAHQFNIHRWNND
SASS------YSVGEEVDYGFGAISKGVSSPYLPFGGGRHRCIGEHFAYCQLGVLMSIFIRTLKWHYPEGKTVPP
PDFTSMVTLPTGPAKIIWEKRNPEQKIGGRHHHHHH*

>P1;G8EW14
sequence:G8EW14.fasta:::::::0.00: 0.00
MSAIIPQVQQLLGQVAQFFPPWFAALPTSLKVAIAVVGIPALIIGLNVFQQLCLPRKKDLPPVVFHYIPWFGSAA
YYGENPYKFLFECRDKYGDLFTFILMGRRITVALGPKGNNLSLGGKISQVSAEEAYTHLTTPVFGKGVVYDCPNE
MLMQQKKFIKSGLTTESLQSYPPMITSECEDFFTKEVGIS-PQKPSATLDLLKAMSELIILTASRTLQGKEVRES
LNGQFAKYYEDLDGGFTPLNFMFPNLPLPSYKRRDEAQKAMSDFYLKIMENRRKGESDHEHDMIENL-QSCKYRN
GVPLSDRDIAHIMIALLMAGQHTSSATSSWTLLHLADRPDVVEALYQEQKQKLGNPDGTFRDYRYEDLKELPIMD
SIIRETLRMHAPIHSIYRKVLSDIPVPPSLSAPSENGQYIIPKGHYIMAAPGVSQMDPRIWQDAKVWNPARWHDE
KGFAAAAMVQYTKAEQVDYGFGSVSKGTESPYQPFGAGRHRCVGEQFAYTQLSTIFTYVVRNFTLKLAVPK-FPE
TNYRTMIVQPNNPL-VTFTLRNAEVKQEV-------*

[3] G8EW14.fasta
>G8EW14:A|PDBID|CHAIN|SEQUENCE
MSAIIPQVQQLLGQVAQFFPPWFAALPTSLKVAIAVVGIPALIIGLNVFQQLCLPRKKDLPPVVFHYIPWFGSAAYYGEN
PYKFLFECRDKYGDLFTFILMGRRITVALGPKGNNLSLGGKISQVSAEEAYTHLTTPVFGKGVVYDCPNEMLMQQKKFIK
SGLTTESLQSYPPMITSECEDFFTKEVGISPQKPSATLDLLKAMSELIILTASRTLQGKEVRESLNGQFAKYYEDLDGGF
TPLNFMFPNLPLPSYKRRDEAQKAMSDFYLKIMENRRKGESDHEHDMIENLQSCKYRNGVPLSDRDIAHIMIALLMAGQH
TSSATSSWTLLHLADRPDVVEALYQEQKQKLGNPDGTFRDYRYEDLKELPIMDSIIRETLRMHAPIHSIYRKVLSDIPVP
PSLSAPSENGQYIIPKGHYIMAAPGVSQMDPRIWQDAKVWNPARWHDEKGFAAAAMVQYTKAEQVDYGFGSVSKGTESPY
QPFGAGRHRCVGEQFAYTQLSTIFTYVVRNFTLKLAVPKFPETNYRTMIVQPNNPLVTFTLRNAEVKQEV