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Need to be able to simultaneously 
process structure on all these scales.
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Segmentation of Cryo-EM 3D Map. Segmentation of individual RyR1 subunits
was initially accomplished by using an automated program called segment3d
included in the EMAN package (34). The Amira visualization software package
(TGS) was used to perform the final, manual segmentation. The segmentation
was quite clear over most of the map, particularly in the TM region; however,
in the CY region there were several points at which the separation between
subunits was ambiguous depending on the parameters used.

Identification of Secondary Structure Elements. !-Helices and "-sheets in the
RyR1 cryo-EM density map were identified by using SSEHunter (9), which
identifies !-helices equal to or longer than two turns and "-sheets equal to or
larger than two strands. Secondary structure elements were also visually
assessed, and only those elements identified by using both quantitative and
visual methods are presented in the final interpretation.

Target Identification. In the sequence homology detection for RyR1 [National
Center for Biotechnology Information (NCBI) protein sequence ID gi: 134134]
residues M1–L600 was first attempted using a HMM–HMM comparison with
HHpred (18). The analysis revealed significant structural similarity to two
crystal structures (100% probability, E ! 0), both of which contain a "-trefoil
fold domain (35). Additional support came from the threading program
mGenThreader (16), which identified the same two homologs with very high
confidence (P values are 2e-05 and 9e-07). Residues Q12–S207 share a fold with
the ligand binding suppressor domain (PDB ID code 1XZZ, sequence identity

19%) (19). Residues G216–Y565 share a fold with the IP3-binding core of the
IP3R1 channel (PDB ID code 1N4K, sequence identity 16%) (Figs. S2 and S3) (20).

Model Building and Refinement with Moulder-EM. Two comparative models of
residues Q12–S207 (model 1) and G216–Y565 (model 2) were independently
calculated based on sequence structure alignment generated with the pro-
gram FUGUE, version 2.0 (36) (to 1XZZ and to 1N4K, respectively), using the
automodel class in MODELLER 9.0 (Figs. S2 and S3) (21). Fold assessment was
performed by using a newly developed protocol optimized specifically for
predicting the accuracy of a model in the absence of its native structure (D.E.,
N. Eswar, M.-Y. Shen, and A.S., unpublished observations). The protocol
constructs a model-specific scoring function using a support vector machine,
which optimizes the weights of sequence similarity measures and statistical
potentials extracted from a tailored training set of models of similar size and
the same secondary structure composition as the model being assessed.
Models predicted to have native overlap values of "0.3 or greater are ex-
pected to have the correct fold; native overlap is defined as the fraction of C!

atoms in a model that are within 3.5 Å of the corresponding atoms in the
native structure after rigid body superposition of the model to the native
structure. The predicted native overlap values for model 1 and model 2 were
0.4 and 0.28, respectively, indicating that both folds are likely correct and that
the models are of relatively low accuracy.

These initial models were localized to the cryo-EM density by using the
exhaustive fitting program FoldHunter (37), available as a plugin through the
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Fig. 3. Localization of homology models for the N-terminal region of the RyR1 in the 3D map. (A) Comparative models for the N-terminal region of RyR1 and
corresponding structural templates. Model 1 (residues Q12–S207) is shown with cyan ribbon; model 2 is composed of two parts, shown with yellow (residues
G216–T407) and red (residues A408–Y565) ribbons. Two parts of model 2 were built and refined independently to obtain better fits to the cryo-EM map. Final
models were obtained through refinement of initial models using Moulder-EM (22). Dashed lines in template structures indicate regions that were not resolved
in original x-ray structures (19). (B) The RyR1 monomer is shown in a side view along with homology models docked to the clamp region. Subregions are
numbered. (C) Refined homology models are shown fitted within the density region segmented from the 9.6-Å map. The segmented density region is displayed
in the orientation derived from its position in B by rotation to "90° around the axis as shown. SSEHunter-identified !-helices and "-sheets are shown with purple
cylinders and yellow solid densities, respectively. N- and C-terminal residues in both models are indicated.

Serysheva et al. PNAS ! July 15, 2008 ! vol. 105 ! no. 28 ! 9613
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Data sources

NMR
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Need to be able to simultaneously 
process all the different data sources.
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Integrative modeling
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Modeller uses only a subset of these data sources
Limited to building structures of proteins at atomic 
resolution
Our new Integrative Modeling Platform (IMP) package 
can use all data sources to build models of protein 
assemblies at a range of resolutions
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Nuclear Pore Complex (NPC)
Consists of broadly conserved 
nucleoporins (nups). 

50 MDa complex: ~480 proteins of 30 
different types.

Mediates all known nuclear transport, via 
cognate transport factors.

Alber et al.  Nature 450, 683-694, 2007 
Alber et al.  Nature 450, 695-701, 2007
Devos et al. PNAS 14, 2172-2177, 2006
Devos et al. PLoS Biology 12, 1-9, 2004

Andrej Sali
Frank Alber, Damien Devos
Narayanan Eswar, Marc Marti-Renom

UCSF

Mike Rout
Svetlana Dokudovskaya, Liesbeth Veenhoff
Orit Karni-Schmidt, Julia Kipper, Tari Suprapto, 
Julia Kipper

Brian Chait
Wenzhu Zhang, Rosemary Williams

Rockefeller University
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Configuration of 
proteins in NPC?
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Integrative modeling - IMP

Alber et al. Nature 2007 • Robinson, Sali, Baumeister. Nature 2007 •
Russel, et al. Current Option in Cell Biology, 2009

Data generation
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Representation

Atomic (crystal or homology model)

Protein as sphere

Domains as spheres (beads on a string)

Mixture
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Scoring (restraints)
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Scoring (restraints)

r S = ½k(r-m)², dS/dx, dS/dy, dS/dz
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Scoring (restraints)

r S = ½k(r-m)², dS/dx, dS/dy, dS/dz

experiment
model
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Optimization

• Total score is sum of all restraints

• Score then minimized by moving the particles with

• Conjugate gradients

• Molecular dynamics

• Monte Carlo

• Inference
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Ensemble analysis

How accurate is a model?
Self-consistency of independent experimental data.
Structural similarity among the configurations in the 
ensemble that satisfy the input restraints.
Simulations where a native structure is assumed, 
corresponding restraints simulated from it, and the 
resulting calculated structure compared with the assumed 
native structure.
Patterns emerging from a mapping of independent and 
unused data on the structure that are unlikely to occur by 
chance.
Experimental spatial data that were not used in the 
calculation of the structure.

Alber et al. Nature 450, 695-702, 2007.
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Presenting IMP

IMP C++/Python library

restrainer

Simplicity
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Chimera tools/
web services

Domain-specific applications

http://salilab.org/imp/
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IMP release

IMP 1.0 is available as open source (LGPL)
Binaries (Mac/Windows/Linux), source, SVN, 
documentation, wiki, examples, mailing lists, unit testing, 
bug tracking...
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C++/Python library

Alber et al. Nature 2007 • Robinson, Sali, Baumeister. Nature 2007 •
Russel, et al. Current Option in Cell Biology, 2009
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C++/Python library

Data generation

Design of
representation

and scoring

Ensemble
analysis

Structure
enumeration

IMP.Particle
IMP.Restraint

IMP.Sampler

IMP.statistics

Model

angle
restraint

volume 
restraint

conjugate
gradients

Monte
Carlo

harmonic

nonbonded
list

particle
distance
score

IO

connectivity 
restraint

cross 
correlation

DOMINO

rigid body
SAXS
score

docking 
score

molecule
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Flexible classes

Particle
Radius

Bounding sphere

Coordinates

Hierarchy

Rigid bodies

Bond
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Modules

IMP 
kernel
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IMP kernel

Does little by itself
Provides abstract C++ classes to define interfaces 
between various parts of IMP

e.g. the kernel defines a “Restraint” as something which, 
given a set of Particles, returns a score on them - but 
doesn’t define any actual restraints
the ‘core’ module provides useful restraints, e.g. to restrain 
a distance between two point-like particles

Every class can also be used from Python
We can develop our own integrative modeling protocols 
from scratch by writing Python scripts
Alternatively, applications may link against the C++ 
library or import the Python modules
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Scripting example

simple.py is a simple IMP Python script
First part; IMP and system setup:
import IMP

import IMP.algebra

import IMP.core

m = IMP.Model()

# Create two "untyped" Particles

p1 = IMP.Particle(m)

p2 = IMP.Particle(m)

# "Decorate" the Particles with x,y,z attributes (point-like particles)

d1 = IMP.core.XYZ.setup_particle(p1)

d2 = IMP.core.XYZ.setup_particle(p2)

# Use some XYZ-specific functionality (set coordinates)

d1.set_coordinates(IMP.algebra.Vector3D(10.0, 10.0, 10.0))

d2.set_coordinates(IMP.algebra.Vector3D(-10.0, -10.0, -10.0))

print d1, d2
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Low-level scripting example

Second part; add restraints:
# Harmonically restrain p1 to be zero distance from the origin

f = IMP.core.Harmonic(0.0, 1.0)

s = IMP.core.DistanceToSingletonScore(f, IMP.algebra.Vector3D(0., 0., 0.))

r1 = IMP.core.SingletonRestraint(s, p1)

m.add_restraint(r1)

# Harmonically restrain p1 and p2 to be distance 5.0 apart

f = IMP.core.Harmonic(5.0, 1.0)

s = IMP.core.DistancePairScore(f)

r2 = IMP.core.PairRestraint(s, IMP.ParticlePair(p1, p2))

m.add_restraint(r2)
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Low-level scripting example

Final part; generate a system configuration consistent 
with all restraints:
# Optimize the x,y,z coordinates of both particles with conjugate gradients

d1.set_coordinates_are_optimized(True)

d2.set_coordinates_are_optimized(True)

o = IMP.core.ConjugateGradients(m)

o.optimize(50)

print d1, d2

Run the final script like any other Python script
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C++ versus Python

The IMP libraries are deliberately set up so as to be very 
similar to use between C++ and Python
Main differences are

language syntax (e.g. ‘import IMP’ in Python roughly 
translates to ‘#include <IMP.h>’ in C++)
memory handling (Python has automatic refcounting; in
C++ this must be done explicitly using the IMP::Pointer 
class)
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import IMP
import IMP.algebra
import IMP.core

m = IMP.Model()

# Create two "untyped" Particles
p1 = IMP.Particle(m)
p2 = IMP.Particle(m)

# "Decorate" the Particles with x,y,z attributes (point-like particles)
d1 = IMP.core.XYZ.setup_particle(p1)
d2 = IMP.core.XYZ.setup_particle(p2)

# Use some XYZ-specific functionality (set coordinates)
d1.set_coordinates(IMP.algebra.Vector3D(10.0, 10.0, 10.0))
d2.set_coordinates(IMP.algebra.Vector3D(-10.0, -10.0, -10.0))
print d1, d2
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import IMP
import IMP.algebra
import IMP.core

m = IMP.Model()

# Create two "untyped" Particles
p1 = IMP.Particle(m)
p2 = IMP.Particle(m)

# "Decorate" the Particles with x,y,z attributes (point-like particles)
d1 = IMP.core.XYZ.setup_particle(p1)
d2 = IMP.core.XYZ.setup_particle(p2)

# Use some XYZ-specific functionality (set coordinates)
d1.set_coordinates(IMP.algebra.Vector3D(10.0, 10.0, 10.0))
d2.set_coordinates(IMP.algebra.Vector3D(-10.0, -10.0, -10.0))
print d1, d2

#include <fstream>

#include <IMP.h>
#include <IMP/algebra.h>
#include <IMP/core.h>

int main()
{
  IMP::Pointer<IMP::Model> m = new IMP::Model();

  // Create two "untyped" Particles
  IMP::Pointer<IMP::Particle> p1 = new IMP::Particle(m);
  IMP::Pointer<IMP::Particle> p2 = new IMP::Particle(m);

  // "Decorate" the Particles with x,y,z attributes (point-like particles)
  IMP::core::XYZ d1 = IMP::core::XYZ::setup_particle(p1);
  IMP::core::XYZ d2 = IMP::core::XYZ::setup_particle(p2);

  // Use some XYZ-specific functionality (set coordinates)
  d1.set_coordinates(IMP::algebra::Vector3D(10.0, 10.0, 10.0));
  d2.set_coordinates(IMP::algebra::Vector3D(-10.0, -10.0, -10.0));
  std::cout << d1 << " " << d2 << std::endl;

  return 0;
}
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IMP C++/Python library
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The IMP kernel gives us lots of flexibility to set up the 
system and restraints exactly how we want them
Many more classes available: see http://salilab.org/imp/ 
for a comprehensive list and examples
But: often we want a simpler interface to solve modeling 
problems
Restrainer is a higher-level interface that simplifies the 
setup of a complex system
Optimization, however, may still need to be tweaked for 
your system

“Restrainer” simplified interface

Friday, June 18, 2010
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“Restrainer” simplified interface
Representation

Data Translation into
Spatial Restraints

Elina Tjioe, Keren Lasker
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“Restrainer” simplified interface
Representation

Data Translation into
Spatial Restraints

<Representation>
    <Protein id=”Rpb1”><Chain filename=”Rpb1.pdb”/></Protein>
        .
        .
        .
    <Protein id=”Rpb12”><Chain filename=”Rpb12.pdb”/></Protein>
</Representation>
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“Restrainer” simplified interface
Representation

Data Translation into
Spatial Restraints

<RestraintSet>
    <EM>
        <Restraint density_filename=”in.mrc”>
            <Particle id=”Rpb1”/>
        </Restraint>
    </EM>
    <Distance>
        <Restraint distance=”5.0” std_dev=”0.1”>
            <Particle id=”Rpb1”/>
            <Particle id=”Rpb4”/>
        </Restraint>
    </Distance>
    <Y2H>
        <Restraint>
            <Particle id=”Rpb2”/>
            <Particle id=”Rpb3”/>
            <Particle id=”Rpb8”/>
        </Restraint>
    </Y2H>
</RestraintSet>
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“Restrainer” simplified interface
Representation

Data Translation into
Spatial Restraints
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“Restrainer” simplified interface
Representation

Data Translation into
Spatial Restraints

representation = IMP.restrainer.XMLRepresentation(”repr.xml”).run()
restraint = IMP.restrainer.XMLRestraint(”restraint.xml”).run()

model = representation.to_model()
restraint.add_to_representation(representation)

s = IMP.multifit.run_optimization(model)
IMP.statistics.analyze_solution_ensemble(s)
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“Restrainer” simplified interface

Data 
generation

Design of
representation
and scoring

Ensemble
analysis

Structure
enumeration

Complete modeling protocols can be published as XML 
inputs and a Python script
Reproducible
Reference model from ensemble analysis
Guide future experiments
Identify poor experiments
Show effect of new data
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Restrainer example

Determine a simple 
“bead model”of a 
subcomplex of the 
Nuclear Pore 
Complex, Nup84

FG nucleoporins

Spoke

Pom152

Ndc1 Pom34

Nup120

Nup85

Nup145C

Nup84

Sec13

Seh1
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Nup170
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Nup145N
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Nup42
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Cytoplasm

Nucleoplasm

Inner rings

Outer rings

Membrane rings

Linker nucleoporins

Figure 2 | Localization of major substructures and their component
nucleoporins in the NPC. This figure is a single view of data presented in
our Supplementary Movie. The nucleoporins are represented by their
localization volumes14 and have been coloured according to their
classification into five distinct substructures on the basis of their location
and functional properties: the outer rings in yellow, the inner rings in purple,
the membrane rings in brown, the linker nucleoporins in blue and pink, and
the FG nucleoporins (for which only the structured domains are shown) in
green. The pore membrane is shown in grey. A single arbitrary repeat unit,
termed the spoke, is shown dissected into its component nucleoporins.
Together, the outer and inner rings connect to form the NPC’s core scaffold
(Fig. 3). Each of the outer rings makes connections with the adjacent linker
nucleoporins and inner rings, but connects with few FGnucleoporins and no
components of the membrane rings. The two inner rings are closely
associated with each other at the NPC’s equator and form connections with
all three integral membrane proteins in the membrane rings, thereby
anchoring the NPC to the nuclear envelope. The bulk of themembrane rings

is formed by homo-oligomerization of the C-terminal domain of Pom152.
The linker nucleoporins Nic96 and Nup82 are anchored between the inner
and outer rings and have a central role in bridging the core scaffold of the
NPC with the functionally important FG nucleoporins. On both the
cytoplasmic and nucleoplasmic sides of each spoke, one copy of Nic96 is
anchored through Nup192 and a second copy through Nup188. Whereas
one copy of Nic96 carries the FG nucleoporins Nsp1, Nup57 andNup49, the
second copy forms interactions to another copy of Nsp1 and at the
cytoplasmic side also interacts with Nup82. Here, Nup82 associates with the
FG nucleoporins Nup159, Nup116, Nsp1 and Nup42. Thus, Nsp1 forms at
least two distinct complexes in the NPC: one exclusively cytoplasmic and
one disposed symmetrically52–55. By contrast, the FG nucleoporins found
only on the nucleoplasmic side connect mainly to the inner ring
nucleoporins, as do Nup53 and Nup59, both of which also face the pore
membrane. The scale bars indicate the average standard deviation of the
distance between a pair of neighbouring proteins in the 1,000 best-scoring
configurations14.

NATURE |Vol 450 |29 November 2007 ARTICLES

697
Nature   ©2007 Publishing Group
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Restrainer input files

Nup84Complex_bead_repr_1.xml
Defines the representation of the system
In this case, each protein is represented by a single sphere 
or (for Nup133 and Nup120) two spheres
Larger proteins are represented by larger spheres

Nup84Complex_restraint_1.xml
Defines the known restraints on the system
Here, we prevent the spheres from interpenetrating 
(excluded volume) and add yeast two-hybrid information

Nup84Complex_display_1.xml
Gives each protein a color for display purposes

nup84.py
Runs the optimization and generates outputs
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Run the optimization

Run like any other Python script
Output: log file, structures (as Chimera Python inputs)

Nup120

Sec13

Seh1 Nup85

Nup84

Nup133

Nup145c
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Next steps

For this model, we used only a bead representation and 
yeast two-hybrid (connectivity) information
Can potentially improve the model by

using more beads per protein to match experimental 
shapes more accurately
using atomic structures (X-ray structures or comparative 
models) rather than beads
adding more restraints - e.g. 2D or 3D EM maps, SAXS 
fits, distances extracted from crystal structures of 
subcomplexes
building an ensemble of models and clustering
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Summary

IMP provides a framework for integrative modeling
Flexible representation, scoring, optimization
Powerful collection of classes for developers
Simpler XML/Python for many modeling tasks
Web services/Chimera integration for specialized 
applications
Everything freely available at http://salilab.org/imp/
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