
MODELLER

A Program for Protein Structure Modeling

Release 10.8, r13157

Andrej Šali

with help from

Ben Webb, M.S. Madhusudhan, Min-Yi Shen, Guangqiang Dong,
Marc A. Martı-Renom, Narayanan Eswar, Frank Alber, Maya Topf,
Baldomero Oliva, András Fiser, Roberto Sánchez, Bozidar Yerkovich,

Azat Badretdinov, Francisco Melo, John P. Overington, and Eric Feyfant

email: modeller-care AT ucsf.edu

URL https://salilab.org/modeller/

2025/11/04

https://salilab.org/modeller/

ii

Contents

Copyright notice xxi

Acknowledgments xxv

1 Introduction 1

1.1 What is Modeller? . 1

1.2 Modeller bibliography . 2

1.3 Obtaining and installing the program . 3

1.4 Bug reports . 4

1.5 Method for comparative protein structure modeling by Modeller 5

1.6 Using Modeller for comparative modeling . 8

1.6.1 Preparing input files . 8

1.6.2 Running Modeller . 9

2 Automated comparative modeling with AutoModel 11

2.1 Simple usage . 11

2.2 More advanced usage . 12

2.2.1 Including water molecules, HETATM residues, and hydrogen atoms 12

2.2.2 Changing the default optimization and refinement protocol 14

2.2.3 Getting a very fast and approximate model . 14

2.2.4 Building a model from multiple templates . 15

2.2.5 Building an all hydrogen model . 16

2.2.6 Refining only part of the model . 16

2.2.7 Including disulfide bridges . 18

2.2.8 Generating new-style PDBx/mmCIF outputs . 19

2.2.9 Providing your own restraints file . 19

2.2.10 Using your own initial model . 20

2.2.11 Adding additional restraints to the defaults . 21

2.2.12 Building multi-chain models . 22

2.2.13 Residues and chains in multi-chain models . 23

2.2.14 Accessing output data after modeling is complete . 24

2.2.15 Fully automated alignment and modeling . 25

2.3 Loop optimization . 26

2.3.1 Automatic loop refinement after model building . 26

2.3.2 Defining loop regions for refinement . 27

iii

iv CONTENTS

2.3.3 Refining an existing PDB file . 28

3 Frequently asked questions and history 31

3.1 Frequently asked questions (FAQ) and examples . 31

3.2 Modeller updates . 38

3.2.1 Changes since release 10.7 . 38

3.2.2 Changes since release 10.6 . 38

4 Comparative modeling class reference 39

4.1 AutoModel reference . 39

4.1.1 AutoModel() — prepare to build one or more comparative models 39

4.1.2 AutoModel.library schedule — select optimization schedule 40

4.1.3 AutoModel.md level — control the model refinement level . 40

4.1.4 AutoModel.outputs — all output data for generated models 40

4.1.5 AutoModel.rand method — control initial model randomization 40

4.1.6 AutoModel.generate method — control initial model generation 40

4.1.7 AutoModel.max var iterations — select length of optimizations 41

4.1.8 AutoModel.repeat optimization — number of times to repeat optimization 41

4.1.9 AutoModel.max molpdf — objective function cutoff . 41

4.1.10 AutoModel.initial malign3d — initial template alignment . 41

4.1.11 AutoModel.starting model — first model to build . 41

4.1.12 AutoModel.ending model — last model to build . 41

4.1.13 AutoModel.final malign3d — final template-model alignment 41

4.1.14 AutoModel.write intermediates — write intermediate files during optimization 41

4.1.15 AutoModel.trace output — control optimization output . 41

4.1.16 AutoModel.max ca ca distance — Distance cutoff for CA-CA homology-derived restraints . . 42

4.1.17 AutoModel.max n o distance — Distance cutoff for N-O homology-derived restraints 42

4.1.18 AutoModel.max sc mc distance — Distance cutoff for sidechain-mainchain homology-derived restraints 42

4.1.19 AutoModel.max sc sc distance — Distance cutoff for sidechain-sidechain homology-derived restraints 42

4.1.20 AutoModel.blank single chain — Control chain ID for single-chain models 42

4.1.21 AutoModel.set output model format() — set format for output models 42

4.1.22 AutoModel.get optimize actions() — get actions to carry out during the initial optimization . 43

4.1.23 AutoModel.get refine actions() — get actions to carry out during the refinement 43

4.1.24 AutoModel.select atoms() — select region for optimization and assessment 43

4.1.25 AutoModel.auto align() — generate an automatic initial alignment 43

4.1.26 AutoModel.very fast() — request rapid optimization . 43

4.1.27 AutoModel.make() — build all models . 43

4.1.28 AutoModel.cluster() — cluster all built models . 44

4.1.29 AutoModel.special restraints() — add additional restraints 44

4.1.30 AutoModel.nonstd restraints() — add restraints on ligands 44

4.1.31 AutoModel.special patches() — add additional patches to the topology 44

4.1.32 AutoModel.user after single model() — analyze or refine each model 45

4.1.33 AutoModel.get model filename() — get the model PDB/mmCIF name 45

4.1.34 AutoModel.use parallel job() — parallelize model building . 45

CONTENTS v

4.1.35 AutoModel.guess atom types() — automatically assign Charmm atom types 45

4.1.36 AutoModel.guess atom type() — automatically assign Charmm atom type 45

4.2 AllHModel reference . 46

4.2.1 AllHModel() — prepare to build all-hydrogen models . 46

4.3 LoopModel reference . 46

4.3.1 LoopModel() — prepare to build models with loop refinement 46

4.3.2 LoopModel.loop.md level — control the loop model refinement level 46

4.3.3 LoopModel.loop.max var iterations — select length of optimizations 46

4.3.4 LoopModel.loop.library schedule — select optimization schedule 47

4.3.5 LoopModel.loop.starting model — first loop model to build 47

4.3.6 LoopModel.loop.ending model — last loop model to build . 47

4.3.7 LoopModel.loop.write selection only — write PDB/mmCIFs containing only the loops 47

4.3.8 LoopModel.loop.write defined only — only write non-loop atoms present in the input model 47

4.3.9 LoopModel.loop.outputs — all output data for generated loop models 47

4.3.10 LoopModel.select loop atoms() — select region for loop optimization and assessment 47

4.3.11 LoopModel.get loop model filename() — get the model PDB/mmCIF name 48

4.3.12 LoopModel.user after single loop model() — analyze or refine each loop model 48

4.3.13 LoopModel.read potential() — read in the loop modeling potential 48

4.3.14 LoopModel.build ini loop() — create the initial conformation of the loop 48

4.4 DOPELoopModel reference . 48

4.4.1 DOPELoopModel() — prepare to build models with DOPE loop refinement 49

4.5 DOPEHRLoopModel reference . 49

5 Modeller general reference 51

5.1 Miscellaneous rules and features of Modeller . 51

5.1.1 Modeller system . 51

5.1.2 Controlling breakpoints and the amount of output . 51

5.1.3 File naming . 51

5.1.4 File types . 53

5.2 Stereochemical parameters and molecular topology . 54

5.2.1 Modeling residues with non-existing or incomplete entries in the topology and parameter libraries 54

5.3 Spatial restraints . 55

5.3.1 Specification of restraints . 55

5.3.2 Specification of pseudo atoms . 58

5.3.3 Excluded pairs . 59

5.3.4 Rigid bodies . 60

5.3.5 Symmetry restraints . 61

6 Modeller command reference 65

6.1 Key for command descriptions . 65

6.2 The Environ class: Modeller environment . 65

6.2.1 Environ() — create a new Modeller environment . 65

6.2.2 Environ.io — default input parameters . 66

6.2.3 Environ.edat — default objective function parameters . 66

vi CONTENTS

6.2.4 Environ.libs — Modeller libraries . 66

6.2.5 Environ.schedule scale — energy function scaling factors . 66

6.2.6 Environ.dendrogram() — clustering . 66

6.2.7 Environ.principal components() — clustering . 66

6.2.8 Environ.system() — execute system command . 67

6.2.9 Environ.make pssmdb() — Create a database of PSSMs given a list of profiles 67

6.3 The EnergyData class: objective function parameters . 69

6.3.1 EnergyData() — create a new set of objective function parameters 69

6.3.2 EnergyData.contact shell — nonbond distance cutoff . 69

6.3.3 EnergyData.update dynamic — nonbond recalculation threshold 69

6.3.4 EnergyData.sphere stdv — soft-sphere standard deviation . 70

6.3.5 EnergyData.dynamic sphere — calculate soft-sphere overlap restraints 70

6.3.6 EnergyData.dynamic lennard — calculate Lennard-Jones restraints 70

6.3.7 EnergyData.dynamic coulomb — calculate Coulomb restraints 70

6.3.8 EnergyData.dynamic modeller — calculate non-bonded spline restraints 70

6.3.9 EnergyData.excl local — exclude certain local pairs of atoms 70

6.3.10 EnergyData.radii factor — scale atomic radii . 70

6.3.11 EnergyData.lennard jones switch — Lennard-Jones switching parameters 70

6.3.12 EnergyData.coulomb switch — Coulomb switching parameters 71

6.3.13 EnergyData.relative dielectric — relative dielectric . 71

6.3.14 EnergyData.covalent cys — use disulfide bridges in residue distance 71

6.3.15 EnergyData.nonbonded sel atoms — control interaction with picked atoms 71

6.3.16 EnergyData.nlogn use — select non-bond list generation algorithm 71

6.3.17 EnergyData.max nlogn grid cells — maximum number of grid cells for NlogN nonbond pairs routine 71

6.3.18 EnergyData.energy terms — user-defined global energy terms 72

6.4 The IOData class: coordinate file input parameters . 73

6.4.1 IOData() — create a new input parameters object . 73

6.4.2 IOData.hetatm — whether to read HETATM records . 73

6.4.3 IOData.hydrogen — whether to read hydrogen atoms . 73

6.4.4 IOData.water — whether to read water molecules . 73

6.4.5 IOData.convert modres — whether to convert modified residues 73

6.4.6 IOData.hybrid36 — whether to read PDB files conformant with hybrid-36 74

6.4.7 IOData.two char chain — whether to read PDB files with two-character chain IDs 74

6.4.8 IOData.atom files directory — search path for coordinate files 74

6.5 The Libraries class: stereochemical parameters and molecular topology 75

6.5.1 Libraries.topology — topology library information . 75

6.5.2 Libraries.parameters — parameter library information . 75

6.5.3 Topology.append() — append residue topology library . 75

6.5.4 Topology.clear() — clear residue topology library . 75

6.5.5 Topology.read() — read residue topology library . 75

6.5.6 Parameters.append() — append parameters library . 75

6.5.7 Parameters.clear() — clear parameters library . 76

6.5.8 Parameters.read() — read parameters library . 76

CONTENTS vii

6.5.9 Topology.make() — make a subset topology library . 76

6.5.10 Topology.submodel — select topology model type . 77

6.5.11 Topology.write() — write residue topology library . 77

6.6 The Model class: handling of atomic coordinates, and model building 78

6.6.1 Model() — create a new 3D model . 78

6.6.2 Model.seq id — sequence identity between the model and templates 78

6.6.3 Model.resolution — resolution of protein structure . 78

6.6.4 Model.last energy — last objective function value . 78

6.6.5 Model.remark — text remark(s) . 78

6.6.6 Model.restraints — all static restraints which act on the model 78

6.6.7 Model.group restraints — all restraints which act on atom groups 79

6.6.8 Model.atoms — all atoms in the model . 79

6.6.9 Model.point() — return a point in Cartesian space . 79

6.6.10 Model.atom range() — return a subset of all atoms . 79

6.6.11 Model.residue range() — return a subset of all residues . 79

6.6.12 Model.get insertions() — return a list of all insertions . 80

6.6.13 Model.get deletions() — return a list of all deletions . 80

6.6.14 Model.loops() — return a list of all loops . 80

6.6.15 Model.read() — read coordinates for MODEL . 80

6.6.16 Model.build sequence() — build model from a sequence of one-letter codes 82

6.6.17 Model.write() — write MODEL . 82

6.6.18 Model.clear topology() — clear model topology . 83

6.6.19 Model.generate topology() — generate MODEL topology . 83

6.6.20 Model.make valid pdb coordinates() — make coordinates fit in PDB format 84

6.6.21 Model.write psf() — write molecular topology to PSF file . 84

6.6.22 Model.patch() — patch MODEL topology . 85

6.6.23 Model.patch ss templates() — guess MODEL disulfides from templates 85

6.6.24 Model.patch ss() — guess MODEL disulfides from model structure 87

6.6.25 Model.build() — build MODEL coordinates from topology 87

6.6.26 Model.transfer xyz() — copy templates’ coordinates to MODEL 88

6.6.27 Model.res num from() — residue numbers from MODEL2 to MODEL 90

6.6.28 Model.rename segments() — rename MODEL segments . 90

6.6.29 Model.to iupac() — standardize certain dihedral angles . 91

6.6.30 Model.reorder atoms() — standardize order of MODEL atoms 91

6.6.31 Model.orient() — center and orient MODEL . 92

6.6.32 Model.write data() — write derivative model data . 93

6.6.33 Model.make region() — define a random surface patch of atoms 95

6.6.34 Model.color() — color MODEL according to alignment . 95

6.6.35 Model.make chains() — Fetch sequences from PDB file . 97

6.6.36 Model.saxs intens() — Calculate SAXS intensity from model 97

6.6.37 Model.saxs pr() — Calculate P (r) of model . 97

6.6.38 Model.saxs chifun() — Calculate SAXS score chi from model 97

6.6.39 Model.assess ga341() — assess a model with the GA341 method 97

viii CONTENTS

6.6.40 Model.assess normalized dope() — assess a model with the normalized DOPE method 98

6.6.41 Model.get normalized dope profile() — get per-residue normalized DOPE profile 99

6.7 The Restraints class: static restraints . 100

6.7.1 Restraints.rigid bodies — all rigid bodies . 100

6.7.2 Restraints.pseudo atoms — all pseudo atoms . 100

6.7.3 Restraints.excluded pairs — all excluded pairs . 100

6.7.4 Restraints.nonbonded pairs — all nonbonded pairs . 100

6.7.5 Restraints.symmetry — all symmetry restraints . 100

6.7.6 Restraints.symmetry.report() — report violated symmetry restraints 100

6.7.7 Restraints.make() — make restraints . 100

6.7.8 Restraints.make distance() — make distance restraints . 103

6.7.9 Restraints.unpick all() — unselect all restraints . 104

6.7.10 Restraints.clear() — delete all restraints . 104

6.7.11 Restraints.pick() — pick restraints for selected atoms . 104

6.7.12 Restraints.unpick redundant() — unselect redundant restraints 105

6.7.13 Restraints.remove unpicked() — remove unselected restraints 106

6.7.14 Restraints.condense() — remove unselected or redundant restraints 106

6.7.15 Restraints.add() — add restraint . 106

6.7.16 Restraints.unpick() — unselect restraints . 107

6.7.17 Restraints.reindex() — renumber model restraints using another model 107

6.7.18 Restraints.spline() — approximate restraints by splines . 108

6.7.19 Restraints.append() — read spatial restraints . 109

6.7.20 Restraints.write() — write spatial restraints . 109

6.8 The secondary structure module: secondary structure restraints 110

6.8.1 Alpha() — make an α-helix . 110

6.8.2 Strand() — make a β-strand . 111

6.8.3 Sheet() — make a β-sheet . 111

6.9 The Selection class: handling of sets of atom coordinates . 112

6.9.1 Selection() — create a new selection . 112

6.9.2 Selection.add() — add objects to selection . 115

6.9.3 Selection.extend by residue() — extend selection by residue 115

6.9.4 Selection.by residue() — make sure all residues are fully selected 115

6.9.5 Selection.select sphere() — select all atoms within radius . 115

6.9.6 Selection.only mainchain() — select only mainchain atoms . 115

6.9.7 Selection.only sidechain() — select only sidechain atoms . 116

6.9.8 Selection.only atom types() — select only atoms of given types 116

6.9.9 Selection.only residue types() — select only atoms of given residue type 116

6.9.10 Selection.only std residues() — select only standard residues 116

6.9.11 Selection.only no topology() — select only residues without topology 116

6.9.12 Selection.only het residues() — select only HETATM residues 116

6.9.13 Selection.only water residues() — select only water residues 117

6.9.14 Selection.only defined() — select only atoms with defined coordinates 117

6.9.15 Selection.write() — write selection coordinates to a file . 117

CONTENTS ix

6.9.16 Selection.translate() — translate all coordinates . 117

6.9.17 Selection.rotate origin() — rotate coordinates about origin 117

6.9.18 Selection.rotate mass center() — rotate coordinates about mass center 117

6.9.19 Selection.transform() — transform coordinates with a matrix 118

6.9.20 Selection.mutate() — mutate selected residues . 118

6.9.21 Selection.randomize xyz() — randomize selected coordinates 120

6.9.22 Selection.superpose() — superpose model on selection given alignment 120

6.9.23 Selection.rotate dihedrals() — change dihedral angles . 123

6.9.24 Selection.unbuild() — undefine coordinates . 124

6.9.25 Selection.hot atoms() — atoms violating restraints . 124

6.9.26 Selection.energy() — evaluate atom selection given restraints 126

6.9.27 Selection.debug function() — test code self-consistency . 128

6.9.28 Selection.assess dope() — assess a model selection with the DOPE method 129

6.9.29 Selection.assess dopehr() — assess a model with the DOPE-HR method 130

6.9.30 Selection.get dope profile() — get per-residue DOPE profile 130

6.9.31 Selection.get dopehr profile() — get per-residue DOPE-HR profile 130

6.9.32 Selection.assess() — assess a model selection . 130

6.10 The physical module: contributions to the objective function . 132

6.10.1 physical.Values() — create a new set of physical values . 132

6.11 The optimizers module: optimization of the model . 134

6.11.1 ConjugateGradients() — optimize atoms given restraints, with CG 134

6.11.2 QuasiNewton() — optimize atoms with quasi-Newton minimization 136

6.11.3 MolecularDynamics() — optimize atoms given restraints, with MD 136

6.11.4 actions.WriteStructure() — write out the model coordinates 136

6.11.5 actions.Trace() — write out optimization energies, etc . 137

6.11.6 actions.CHARMMTrajectory() — write out a CHARMM trajectory 137

6.11.7 User-defined optimizers . 138

6.12 The Schedule class: variable target function optimization . 141

6.12.1 Schedule() — create a new schedule . 141

6.12.2 Schedule.make for model() — trim a schedule for a model . 142

6.12.3 Schedule.write() — write optimization schedule . 142

6.13 The GroupRestraints class: restraints on atom groups . 144

6.13.1 GroupRestraints() — create a new set of group restraints . 144

6.13.2 GroupRestraints.append() — read group restraint parameters 144

6.14 The gbsa module: implicit solvation . 146

6.14.1 gbsa.Scorer() — create a new scorer to evaluate GB/SA energies 146

6.15 SOAP potentials . 147

6.15.1 soap loop.Scorer() — create a new scorer to evaluate SOAP-Loop energies 147

6.15.2 soap peptide.Scorer() — create a new scorer to evaluate SOAP-Peptide energies 147

6.15.3 soap pp.PairScorer() — create a new scorer to evaluate SOAP-PP pairwise energies 147

6.15.4 soap pp.AtomScorer() — create a new scorer to evaluate SOAP-PP atomistic energies 147

6.15.5 soap pp.Assessor() — assess with all components of the SOAP-PP score 148

6.15.6 soap protein od.Scorer() — create a new scorer to evaluate SOAP-Protein-OD energies . . . 148

x CONTENTS

6.16 The Alignment class: comparison of sequences and structures . 149

6.16.1 Alignment() — create a new alignment . 149

6.16.2 Alignment.comments — alignment file comments . 149

6.16.3 Alignment.positions — list of residue-residue alignment positions (including gaps) 149

6.16.4 Alignment.append() — read sequences and/or their alignment 149

6.16.5 Alignment.clear() — delete all sequences from the alignment 151

6.16.6 Alignment.read one() — read sequences one by one from a file 151

6.16.7 Alignment.check structure structure() — check template structure superpositions 152

6.16.8 Alignment.check sequence structure() — check sequence/structure alignment for sanity . . . 152

6.16.9 Alignment.check() — check alignment for modeling . 152

6.16.10Alignment.compare with() — compare two alignments . 153

6.16.11Alignment.append model() — copy model sequence and coordinates to alignment 154

6.16.12Alignment.append sequence() — add a sequence from one-letter codes 155

6.16.13Alignment.append profile() — add profile sequences to the alignment 155

6.16.14Alignment.write() — write sequences and/or their alignment 155

6.16.15Alignment.edit() — edit overhangs in alignment . 156

6.16.16Alignment.describe() — describe proteins . 157

6.16.17Alignment.id table() — calculate percentage sequence identities 157

6.16.18Alignment.compare sequences() — compare sequences in alignment 158

6.16.19Alignment.align() — align two (blocks of) sequences . 159

6.16.20Alignment.align2d() — align sequences with structures . 160

6.16.21Alignment.malign() — align two or more sequences . 162

6.16.22Alignment.consensus() — consensus sequence alignment . 163

6.16.23Alignment.compare structures() — compare 3D structures given alignment 163

6.16.24Alignment.align3d() — align two structures . 164

6.16.25Alignment.malign3d() — align two or more structures . 166

6.16.26Alignment.salign() — align two or more sequences/structures of proteins 167

6.16.27Alignment.get suboptimals() — parse suboptimal alignments file 177

6.16.28Alignment.to profile() — convert alignment to profile format 177

6.16.29Alignment.segment matching() — align segments . 178

6.17 The Sequence class: a single sequence within an alignment . 180

6.17.1 Sequence.range — residue range . 180

6.17.2 Sequence.code — alignment code . 180

6.17.3 Sequence.atom file — PDB file name . 180

6.17.4 Sequence.source — source organism . 180

6.17.5 Sequence.name — protein name . 180

6.17.6 Sequence.prottyp — protein sequence type . 180

6.17.7 Sequence.pdb accession — PDB accession code . 180

6.17.8 Sequence.resolution — structure resolution . 181

6.17.9 Sequence.rfactor — R factor . 181

6.17.10Sequence.residues — list of all residues in the sequence . 181

6.17.11Sequence.chains — list of all chains in the sequence . 181

6.17.12Sequence.transfer res prop() — transfer residue properties . 181

CONTENTS xi

6.17.13Sequence.get num equiv() — get number of equivalences . 181

6.17.14Sequence.get sequence identity() — get sequence identity . 182

6.18 The Structure class: a template structure within an alignment . 183

6.18.1 Structure.write() — write out PDB file . 183

6.18.2 Structure.reread() — reread coordinates from the atom file 183

6.18.3 Structure.read() — read coordinates from a PDB file . 183

6.19 The Chain class: a single chain in a model or alignment . 184

6.19.1 Chain.name — chain ID . 184

6.19.2 Chain.residues — all residues in the chain . 184

6.19.3 Chain.atoms — all atoms in the chain . 184

6.19.4 Chain.filter() — check if this chain passes all criteria . 185

6.19.5 Chain.write() — write out chain sequence to an alignment file 185

6.19.6 Chain.atom file and code() — get suitable names for this chain 186

6.19.7 Chain.join() — join other chain(s) onto this one . 186

6.20 The Residue class: a single residue in a model or alignment . 188

6.20.1 Residue.name — internal (CHARMM) residue type name . 188

6.20.2 Residue.pdb name — PDB (IUPAC) type name . 188

6.20.3 Residue.code — One-letter residue type code . 189

6.20.4 Residue.hetatm — HETATM indicator . 189

6.20.5 Residue.index — internal integer index . 189

6.20.6 Residue.num — PDB-style residue number plus insertion code 189

6.20.7 Residue.intnum — PDB-style residue number . 189

6.20.8 Residue.inscode — PDB-style residue insertion code . 189

6.20.9 Residue.curvature — Mainchain curvature . 190

6.20.10Residue.atoms — all atoms in the residue . 190

6.20.11Residue.chain — chain object . 190

6.20.12Residue.phi — φ dihedral angle . 190

6.20.13Residue.psi — ψ dihedral angle . 190

6.20.14Residue.omega — ω dihedral angle . 190

6.20.15Residue.alpha — α dihedral angle . 190

6.20.16Residue.chi1 — χ1 dihedral angle . 190

6.20.17Residue.chi2 — χ2 dihedral angle . 190

6.20.18Residue.chi3 — χ3 dihedral angle . 190

6.20.19Residue.chi4 — χ4 dihedral angle . 191

6.20.20Residue.chi5 — χ5 dihedral angle . 191

6.20.21Residue.get aligned residue() — get aligned residue in another sequence 191

6.20.22Residue.add leading gaps() — add gap(s) before this residue 191

6.20.23Residue.add trailing gaps() — add gap(s) after this residue 191

6.20.24Residue.remove leading gaps() — remove gap(s) before this residue 191

6.20.25Residue.remove trailing gaps() — remove gap(s) after this residue 191

6.20.26Residue.get leading gaps() — get number of gaps before this residue 192

6.20.27Residue.get trailing gaps() — get number of gaps after this residue 192

6.21 The Dihedral class: a single dihedral in a model or alignment . 193

xii CONTENTS

6.21.1 Dihedral.value — current value in degrees . 193

6.21.2 Dihedral.atoms — atoms defining the angle . 193

6.21.3 Dihedral.dihclass — integer dihedral class . 193

6.22 The Point class: a point in Cartesian space . 194

6.22.1 Point.x — x coordinate . 194

6.22.2 Point.select sphere() — select all atoms within radius . 194

6.23 The Atom class: a single atom in a model or structure . 195

6.23.1 Atom.dvx — objective function derivative . 195

6.23.2 Atom.vx — x component of velocity . 195

6.23.3 Atom.biso — isotropic temperature factor . 195

6.23.4 Atom.accessibility — atomic accessibility . 196

6.23.5 Atom.occ — occupancy . 196

6.23.6 Atom.charge — electrostatic charge . 196

6.23.7 Atom.mass — mass . 196

6.23.8 Atom.name — PDB name . 196

6.23.9 Atom.type — CHARMM atom type . 196

6.23.10Atom.residue — residue object . 196

6.23.11Atom.get equivalent atom() — get equivalent atom in another residue 196

6.24 The AtomType class: a CHARMM atom type . 197

6.24.1 AtomType.name — CHARMM name . 197

6.24.2 AtomType.mass — atomic mass . 197

6.24.3 AtomType.element — element . 197

6.25 The EnergyProfile class: a per-residue energy profile . 198

6.25.1 EnergyProfile.min rms — minimal RMS violation . 198

6.25.2 EnergyProfile.heavy rms — heavy RMS violation . 198

6.25.3 EnergyProfile.get normalized() — get a normalized energy profile 198

6.25.4 EnergyProfile.get smoothed() — get a smoothed energy profile 198

6.25.5 EnergyProfile.write to file() — write to file . 198

6.26 The Profile class: using sequence profiles . 199

6.26.1 Profile() — create a new profile . 199

6.26.2 Profile.read() — read a profile of a sequence . 199

6.26.3 Profile.write() — write a profile . 199

6.26.4 Profile.to alignment() — profile to alignment . 200

6.26.5 Profile.scan() — Compare a target profile against a database of profiles 201

6.26.6 Profile.build() — Build a profile for a given sequence or alignment 203

6.26.7 PSSMDB() — create a new PSSM database . 205

6.26.8 PSSMDB.read() — read a PSSM database from a file . 205

6.27 The SequenceDB class: using sequence databases . 206

6.27.1 SequenceDB() — create a new sequence database . 206

6.27.2 SequenceDB.read() — read a database of sequences . 206

6.27.3 SequenceDB.close() — close an open database . 207

6.27.4 SequenceDB.write() — write a database of sequences . 207

6.27.5 SequenceDB.convert() — convert a database to binary format 207

CONTENTS xiii

6.27.6 SequenceDB.search() — search for similar sequences . 207

6.27.7 SequenceDB.filter() — cluster sequences by sequence-identity 209

6.28 The Density class: handling electron microscopy density data . 211

6.28.1 Density() — create a new density map . 211

6.28.2 Density.resolution — Map resolution . 211

6.28.3 Density.sigma factor — Sigma factor . 211

6.28.4 Density.voxel size — Map voxel size . 211

6.28.5 Density.px — Origin of the map . 211

6.28.6 Density.py — Origin of the map . 211

6.28.7 Density.pz — Origin of the map . 211

6.28.8 Density.grid — Density values . 211

6.28.9 Density.read() — read an EM (electron microscopy) density map file 211

6.28.10Density.grid search() — dock a structure into an EM (electron microscopy) density map . . . 212

6.29 The SAXSData class: using small-angle X-ray (SAXS) data . 215

6.29.1 SAXSData() — create a new SAXSData structure . 215

6.29.2 SAXSData.ini saxs() — Initialization of SAXS data . 215

6.29.3 SAXSData.saxs read() — Read in SAXS data . 215

6.29.4 SAXSData.saxs pr read() — Read in P(r) data . 215

6.30 The info object: obtaining information about the Modeller build 217

6.30.1 info.version — the full Modeller version number . 217

6.30.2 info.version info — the version number, as a tuple . 217

6.30.3 info.build date — the date this binary was built . 217

6.30.4 info.exe type — the executable type of this binary . 217

6.30.5 info.debug — this binary’s debug flag . 217

6.30.6 info.bindir — Modeller binary directory . 217

6.30.7 info.time mark() — print current date, time, and CPU time 217

6.30.8 info.jobname — name of the current job . 217

6.31 The log object: controlling the amount of output . 218

6.31.1 log.level() — Set all log output levels . 218

6.31.2 log.none() — display no log output . 218

6.31.3 log.minimal() — display minimal log output . 218

6.31.4 log.verbose() — display verbose log output . 218

6.31.5 log.very verbose() — display verbose log output, and dynamic memory information 218

6.32 The modfile module: handling of files . 219

6.32.1 modfile.default() — generate an ‘automatic’ filename . 219

6.32.2 modfile.delete() — delete a file . 219

6.32.3 modfile.inquire() — check if file exists . 219

6.32.4 modfile.File() — open a handle to a Modeller file . 219

6.33 The scripts module: utility scripts . 220

6.33.1 cispeptide() — creates cis-peptide stereochemical restraints 220

6.33.2 complete pdb() — read a PDB, mmCIF, or BinaryCIF file, and fill in any missing atoms . . 220

6.34 The salign module: high-level usage of SALIGN . 220

6.34.1 iterative structural align() — obtain the best structural alignment 220

xiv CONTENTS

6.35 Parallel job support . 221

6.35.1 Job() — create a new parallel job . 221

6.35.2 SGEPEJob() — create a job using all Sun GridEngine (SGE) worker processes 222

6.35.3 SGEQsubJob() — create a job which can be expanded with Sun GridEngine ’qsub’ 222

6.35.4 Job.worker startup commands — Worker startup commands 222

6.35.5 Job.queue task() — submit a task to run within the job . 223

6.35.6 Job.run all tasks() — run all queued tasks, and return results 223

6.35.7 Job.yield tasks unordered() — run all queued tasks, and yield unordered results 224

6.35.8 Job.start() — start all workers for message-passing . 224

6.35.9 Communicator.send data() — send data . 225

6.35.10Communicator.get data() — get data . 225

6.35.11Worker.run cmd() — run a command on the worker . 225

6.35.12LocalWorker() — create a worker running on the local machine 226

6.35.13SGEPEWorker() — create a worker running on a Sun GridEngine parallel environment worker node226

6.35.14SGEQsubWorker() — create a ’qsub’ worker running on a Sun GridEngine node 226

6.35.15SSHWorker() — create a worker on a remote host accessed via ssh 226

7 Modeller low-level programming 227

7.1 User-defined features and restraint forms . 227

7.1.1 User-defined feature types . 227

7.1.2 User-defined restraint forms . 228

7.1.3 User-defined energy terms . 230

7.2 Modeller programming interface (API) . 231

A Methods 235

A.1 Dynamic programming for sequence and structure comparison and searching 235

A.1.1 Pairwise comparison . 235

A.1.2 Variable gap penalty . 236

A.1.3 Local versus global alignment . 236

A.1.4 Similarity versus distance scores . 237

A.1.5 Multiple comparisons . 237

A.2 Optimization of the objective function by Modeller . 237

A.2.1 Function . 237

A.2.2 Optimizers . 238

A.3 Equations used in the derivation of the molecular pdf . 242

A.3.1 Features and their derivatives . 242

A.3.2 Restraints and their derivatives . 244

A.4 Flowchart of comparative modeling by Modeller . 248

A.5 Loop modeling method . 250

B File formats 251

B.1 Alignment file (PIR) . 251

B.2 Restraints file . 253

B.2.1 Restraints . 253

B.2.2 Excluded pairs . 253

CONTENTS xv

B.2.3 Pseudo atoms . 254

B.2.4 Symmetry restraints . 255

B.2.5 Rigid bodies . 255

B.3 Profile file . 255

B.4 Binary files . 256

C Converting Top scripts from old Modeller versions 257

C.1 Running old scripts unchanged . 257

C.2 Converting Top scripts to Python . 257

C.2.1 Top commands and variables . 257

C.2.2 Top models and alignments . 258

C.2.3 Top to Python correspondence . 258

https://www.python.org/
https://www.python.org/

xvi CONTENTS

List of Figures

1.1 Comparative protein modeling by satisfaction of spatial restraints. 6

1.2 Sample spatial restraint. 7

1.3 Optimization of the objective function. 7

5.1 Mathematical forms of restraints. 63

xvii

xviii LIST OF FIGURES

List of Tables

5.1 List of file types. 53

6.1 List of “physical” restraint types. 133

B.1 Numerical restraint forms . 254

B.2 Numerical feature types . 254

B.3 Numerical pseudo atom types . 255

C.1 Correspondence between Top and Python commands. 261

C.2 Correspondence between Top and Python variables. 261

xix

xx LIST OF TABLES

Copyright notice

Modeller, a protein structure modeling program.

Copyright c© 1989–2025 Andrej Šali.

This program is distributed in the hope that it will be useful, but without any warranty; without even the implied
warranty of merchantability or fitness for any purpose. The entire risk as to the quality and performance of the
program is with the user.

Distribution of the program is allowed only with the author’s written consent.

Python 2.3 is incorporated into Modeller. This is Copyright c© 2001–2003 Python Software Foundation; All
Rights Reserved.

gzip is included in Windows builds, which is

Copyright c© 1998-1999, 2001-2002, 2006-2007, 2009-2021 Free Software Foundation, Inc.
Copyright c© 1992, 1993 Jean-loup Gailly

gzip is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2, or (at your option)
any later version.

gzip is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

Under the terms of the GPL, the source code for gzip can be provided on request by theModeller developers.
Alternatively, it can be downloaded from http://gnuwin32.sourceforge.net/.

bzip2 is also included in Windows builds, which is

Copyright (C) 1996-2019 by Julian Seward.

This program is free software; you can redistribute it and/or modify it under the terms set out in
the LICENSE file, which is included in the bzip2-1.0 source distribution.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the LICENSE file for more details.

The source code for bzip2 can be downloaded from http://gnuwin32.sourceforge.net/.

glib (and, on relevant platforms, its libiconv and libintl dependencies) is also included in Modeller. These
libraries are copyrighted under the GNU Library General Public License.

xxi

https://www.python.org/
http://gnuwin32.sourceforge.net/
http://gnuwin32.sourceforge.net/
http://www.gnu.org/copyleft/library.html

xxii LIST OF TABLES

The source code for glib can be downloaded from http://www.gtk.org/download/. libiconv and libintl source
code can be downloaded from the GNU website.

CMP is included in Modeller. The source code can be obtained from https://github.com/camgunz/cmp. It is
copyrighted under the MIT License with the conditions below.

Copyright (c) 2020 Charles Gunyon

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the ”Software”), to deal in the Software without restriction, in-
cluding without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

HDF5 is included in Modeller, with the conditions below.

Copyright Notice and License Terms for HDF5 (Hierarchical Data Format 5) Software Library and
Utilities —————————————————————————–

HDF5 (Hierarchical Data Format 5) Software Library and Utilities Copyright 2006-2015 by The
HDF Group.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities Copyright 1998-2006 by
the Board of Trustees of the University of Illinois.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted for
any purpose (including commercial purposes) provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions,
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions,
and the following disclaimer in the documentation and/or materials provided with the distribution.

3. In addition, redistributions of modified forms of the source or binary code must carry prominent
notices stating that the original code was changed and the date of the change.

4. All publications or advertising materials mentioning features or use of this software are asked,
but not required, to acknowledge that it was developed by The HDF Group and by the National
Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign and
credit the contributors.

5. Neither the name of The HDF Group, the name of the University, nor the name of any Contrib-
utor may be used to endorse or promote products derived from this software without specific prior
written permission from The HDF Group, the University, or the Contributor, respectively.

DISCLAIMER: THIS SOFTWARE IS PROVIDED BY THE HDF GROUP AND THE CONTRIB-
UTORS ”AS IS” WITH NOWARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED.
In no event shall The HDF Group or the Contributors be liable for any damages suffered by the
users arising out of the use of this software, even if advised of the possibility of such damage.

—————————————————————————– —————————————————
————————–

Contributors: National Center for Supercomputing Applications (NCSA) at the University of Illi-
nois, Fortner Software, Unidata Program Center (netCDF), The Independent JPEG Group (JPEG),
Jean-loup Gailly and Mark Adler (gzip), and Digital Equipment Corporation (DEC).

http://www.gtk.org/download/
http://www.gnu.org/software/libiconv/
http://www.gnu.org/software/gettext/gettext.html
https://github.com/camgunz/cmp

LIST OF TABLES xxiii

—————————————————————————–

Portions of HDF5 were developed with support from the Lawrence Berkeley National Labora-
tory (LBNL) and the United States Department of Energy under Prime Contract No. DE-AC02-
05CH11231.

—————————————————————————–

Portions of HDF5 were developed with support from the University of California, Lawrence Liver-
more National Laboratory (UC LLNL). The following statement applies to those portions of the
product and must be retained in any redistribution of source code, binaries, documentation, and/or
accompanying materials:

This work was partially produced at the University of California, Lawrence Livermore National
Laboratory (UC LLNL) under contract no. W-7405-ENG-48 (Contract 48) between the U.S. De-
partment of Energy (DOE) and The Regents of the University of California (University) for the
operation of UC LLNL.

DISCLAIMER: This work was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor the University of California nor any
of their employees, makes any warranty, express or implied, or assumes any liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately- owned rights. Reference herein to
any specific commercial products, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or the
University of California, and shall not be used for advertising or product endorsement purposes.
—————————————————————————–

xxiv LIST OF TABLES

Acknowledgments

I am grateful to my PhD supervisor Professor Tom L. Blundell in whose laboratory at Birkbeck College the program
was initiated.

I would also like to thank Professor Martin Karplus who allowed some of the data in the Charmm topology and
library files to be used with Modeller.

I am in debt to the Modeller users for their constructive criticisms and suggestions.

Modeller was written when at

1989–1990: Department of Crystallography, Birkbeck College
University of London, Malet St, London WC1E 7HX, UK.

1990–1991: ICRF Unit of Structural Molecular Biology, Birkbeck College
Malet St, London WC1E 7HX, UK.

1991–1994: Department of Chemistry, Harvard University
12 Oxford St, Cambridge, MA 02138, USA.

1995–2003: The Rockefeller University,
1230 York Ave, New York, NY 10021, USA.

2003–: University of California, San Francisco,
1700 4th Street, San Francisco, CA 94143, USA.

xxv

xxvi LIST OF TABLES

Chapter 1

Introduction

1.1 What is Modeller?

Modeller is a computer program that models three-dimensional structures of proteins and their assemblies by
satisfaction of spatial restraints.

Modeller is most frequently used for homology or comparative protein structure modeling: The user provides
an alignment of a sequence to be modeled with known related structures andModeller will automatically calculate
a model with all non-hydrogen atoms (these structures are often homologs, but certainly don’t have to be, hence
the term “comparative” modeling).

More generally, the input to the program are restraints on the spatial structure of the amino acid sequence(s) and
ligands to be modeled. The output is a 3D structure that satisfies these restraints as well as possible. Restraints can
in principle be derived from a number of different sources. These include related protein structures (comparative
modeling), NMR experiments (NMR refinement), rules of secondary structure packing (combinatorial modeling),
cross-linking experiments, fluorescence spectroscopy, image reconstruction in electron microscopy, site-directed
mutagenesis, intuition, residue–residue and atom–atom potentials of mean force, etc. The restraints can operate
on distances, angles, dihedral angles, pairs of dihedral angles and some other spatial features defined by atoms or
pseudo atoms. Presently, Modeller automatically derives the restraints only from the known related structures
and their alignment with the target sequence.

A 3D model is obtained by optimization of a molecular probability density function (pdf). The molecular pdf
for comparative modeling is optimized with the variable target function procedure in Cartesian space that employs
methods of conjugate gradients and molecular dynamics with simulated annealing.

Modeller can also perform multiple comparison of protein sequences and/or structures, clustering of proteins,
and searching of sequence databases. The program is used with a scripting language and does not include any
graphics. It is written in standard Fortran 90 and will run on Unix, Windows, or Mac computers.

1

2 CHAPTER 1. INTRODUCTION

1.2 Modeller bibliography

In your publications using Modeller, please quote

A. Šali and T. L. Blundell. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234,
779–815, 1993.

More information about the methods implemented in Modeller, their use, applications, and limitations can be
found in the papers listed on our web site at https://salilab.org/publications/. Here is a subset of these
publications:

1. A. Šali and T. L. Blundell. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol.

234, 779–815, 1993.

2. A. Šali and J. P. Overington. Derivation of rules for comparative protein modeling from a database of protein
structure alignments. Protein Science 3, 1582–1596, 1994.

3. R. Sánchez and A. Šali. Comparative protein structure modeling: Introduction and practical examples with
Modeller. In Protein Structure Prediction: Methods and Protocols, D.M. Webster, editor, 97–129. Humana
Press, 2000.

4. M. A. Mart́ı-Renom, A. Stuart, A. Fiser, R. Sánchez, F. Melo and A. Šali. Comparative protein structure
modeling of genes and genomes. Ann. Rev. Biophys. Biomolec. Struct. 29, 291–325, 2000.

5. A. Fiser, R. K. G. Do and A. Šali. Modeling of loops in protein structures. Protein Science 9, 1753–1773,
2000.

6. F. Melo, R. Sánchez, A. Šali. Statistical potentials for fold assessment. Protein Science 11, 430–448, 2002.

7. M. A. Mart́ı-Renom, B. Yerkovich, and A. Šali. Comparative protein structure prediction. John Wiley &
Sons, Inc. Current Protocols in Protein Science 1, 2.9.1 – 2.9.22, 2002.

8. U. Pieper, N. Eswar, A. C. Stuart, V. A. Ilyin and A. Šali. MODBASE, a database of annotated comparative
protein structure models. Nucleic Acids Research 30, 255–259, 2002.

9. A. Fiser and A. Šali. MODELLER: generation and refinement of homology-based protein structure models.
In Methods in Enzymology, C.W. Carter and R.M. Sweet, eds. Academic Press, San Diego, 374, 463–493,
2003.

10. N. Eswar, B. John, N. Mirkovic, A. Fiser, V. A. Ilyin, U. Pieper, A. C. Stuart, M. A. Mart́ı-Renom, M.
S. Madhusudhan, B. Yerkovich and A. Šali. Tools for comparative protein structure modeling and analysis.
Nucleic Acids Research 31, 3375–3380, 2003.

https://salilab.org/publications/

1.3. OBTAINING AND INSTALLING THE PROGRAM 3

1.3 Obtaining and installing the program

This manual assumes that you already haveModeller installed on your computer. Please refer to the release notes
on the Modeller web site for information on obtaining and installing the program.

https://salilab.org/modeller/release.html

4 CHAPTER 1. INTRODUCTION

1.4 Bug reports

Please report Modeller bugs by e-mail to the Modeller developers (for contact information, see
https://salilab.org/modeller/contact.html), or, if you suspect your inputs may be faulty (and the files are
not confidential) to the users’ mailing list (see the same web page).

In order to be able to reproduce the bug, we will need all of your original input files (e.g., script file, alignment,
PDBs). In most cases, the full output demonstrating the error(s) you receive is useful too.

Please do not paste your input files directly into your email, but instead put them in a .zip or .tar.gz file.
That way, we can see the exact same files you’re using.

https://salilab.org/modeller/contact.html

1.5. METHOD FOR COMPARATIVE PROTEIN STRUCTURE MODELING BY MODELLER 5

1.5 Method for comparative protein structure modeling by Modeller

Modeller implements an automated approach to comparative protein structure modeling by satisfaction of spatial
restraints (Figure 1.1) [Šali & Blundell, 1993]. The method and its applications to biological problems are described
in detail in references listed in Section 1.2. Briefly, the core modeling procedure begins with an alignment of the
sequence to be modeled (target) with related known 3D structures (templates). This alignment is usually the input
to the program. The output is a 3D model for the target sequence containing all mainchain and sidechain non-
hydrogen atoms. Given an alignment, the model is obtained without any user intervention. First, many distance
and dihedral angle restraints on the target sequence are calculated from its alignment with template 3D structures
(Figure 1.2). The form of these restraints was obtained from a statistical analysis of the relationships between
many pairs of homologous structures. This analysis relied on a database of 105 family alignments that included
416 proteins with known 3D structure [Šali & Overington, 1994]. By scanning the database, tables quantifying
various correlations were obtained, such as the correlations between two equivalent Cα – Cα distances, or between
equivalent mainchain dihedral angles from two related proteins. These relationships were expressed as conditional
probability density functions (pdf’s) and can be used directly as spatial restraints. For example, probabilities
for different values of the mainchain dihedral angles are calculated from the type of a residue considered, from
mainchain conformation of an equivalent residue, and from sequence similarity between the two proteins. Another
example is the pdf for a certain Cα–Cα distance given equivalent distances in two related protein structures
(Figure 1.2). An important feature of the method is that the spatial restraints are obtained empirically, from a
database of protein structure alignments. Next, the spatial restraints and Charmm energy terms enforcing proper
stereochemistry [MacKerell et al., 1998] are combined into an objective function. Finally, the model is obtained
by optimizing the objective function in Cartesian space. The optimization is carried out by the use of the variable
target function method [Braun & Gõ, 1985] employing methods of conjugate gradients and molecular dynamics
with simulated annealing (Figure 1.3). Several slightly different models can be calculated by varying the initial
structure. The variability among these models can be used to estimate the errors in the corresponding regions of
the fold.

There are additional specialized modeling protocols, such as that for the modeling of loops (Section 2.3).

6 CHAPTER 1. INTRODUCTION

Figure 1.1: Comparative protein modeling by satisfaction of spatial restraints. First, the known, template 3D structures

are aligned with the target sequence to be modeled. Second, spatial features, such as Cα–Cα distances, hydrogen bonds,

and mainchain and sidechain dihedral angles, are transferred from the templates to the target. Thus, a number of spatial

restraints on its structure are obtained. Third, the 3D model is obtained by satisfying all the restraints as well as possible.

1.5. METHOD FOR COMPARATIVE PROTEIN STRUCTURE MODELING BY MODELLER 7

Figure 1.2: Sample spatial restraint. A restraint on a given Cα–Cα distance, d, is expressed as a conditional probability

density function that depends on two other equivalent distances (d′ = 17.0 and d′′ = 23.5): p(d/d′, d′′). The restraint

(continuous line) is obtained by least-squares fitting a sum of two Gaussian functions to the histogram, which in turn is

derived from the database of alignments of protein structures. In practice, more complicated restraints are used that depend

on additional information, such as similarity between the proteins, solvent accessibility, and distance from a gap in the

alignment [Šali & Blundell, 1993].

Figure 1.3: Optimization of the objective function. Optimization of the objective function (curve) starts with a distorted

average of template structures. In this run, the first ∼ 2, 000 iterations correspond to the variable target function method

relying on the conjugate gradients technique. This approach first satisfies sequentially local restraints and slowly introduces

longer range restraints until the complete objective function is optimized. In the last 4,750 iterations for this model, molecular

dynamics with simulated annealing is used to refine the model. Typically, a model is calculated in the order of minutes on

a PC workstation.

8 CHAPTER 1. INTRODUCTION

1.6 Using Modeller for comparative modeling

Simple demonstrations of Modeller in all steps of comparative protein structure modeling, including fold as-
signment, sequence-structure alignment, model building, and model assessment, can be found in references listed
at https://salilab.org/modeller/documentation.html. A number of additional tools useful in comparative
modeling are listed at https://salilab.org/bioinformatics resources.shtml. Specifically, users have access
to ModBase, a comprehensive database of comparative models for all known protein sequences detectably related
to at least one known protein structure; ModWeb, a web server for automated comparative protein structure
modeling; and ModLoop, a web server for automated modeling of loops in protein structures. For “frequently-
asked-questions” (FAQ), see Section 3.1.

The rest of this section is a ‘hands on’ description of the most basic use of Modeller in comparative modeling,
in which the input are Protein Data Bank (PDB) atom files of known protein structures, and their alignment with
the target sequence to be modeled, and the output is a model for the target that includes all non-hydrogen atoms.
Although Modeller can find template structures as well as calculate sequence and structure alignments, it is
better in the difficult cases to identify the templates and prepare the alignment carefully by other means. The
alignment can also contain very short segments such as loops, secondary structure motifs, etc.

1.6.1 Preparing input files

The sample input files in this tutorial can be found in the examples/automodel directory of the Modeller

distribution.

There are three kinds of input files: Protein Data Bank atom files with coordinates for the template structures,
the alignment file with the alignment of the template structures with the target sequence, andModeller commands
in a script file that instruct Modeller what to do.

Atom files

Each atom file is named code.atm where code is a short protein code, preferably the PDB code; for example,
Peptococcus aerogenes ferredoxin would be in a file 1fdx.atm. If you wish, you can also use file extensions .pdb
and .ent instead of .atm. The code must be used as that protein’s identifier throughout the modeling.

Alignment file

One of the formats for the alignment file is related to the PIR database format; this is the preferred format for
comparative modeling:

C; A sample alignment in the PIR format; used in tutorial

>P1;5fd1

structureX:5fd1:1 :A:106 :A:ferredoxin:Azotobacter vinelandii: 1.90: 0.19

AFVVTDNCIKCKYTDCVEVCPVDCFYEGPNFLVIHPDECIDCALCEPECPAQAIFSEDEVPEDMQEFIQLNAELA

EVWPNITEKKDPLPDAEDWDGVKGKLQHLER*

>P1;1fdx

sequence:1fdx:1 :A:54 :A:ferredoxin:Peptococcus aerogenes: 2.00:-1.00

AYVINDSC--IACGACKPECPVNIIQGS--IYAIDADSCIDCGSCASVCPVGAPNPED-----------------

-------------------------------*

See Section B.1 for a detailed description of the alignment file format. Influence of the alignment on the quality
of the model cannot be overemphasized. To obtain the best possible model, it is important to understand how
the alignment is used by Modeller [Šali & Blundell, 1993]. In outline, for the aligned regions, Modeller tries
to derive a 3D model for the target sequence that is as close to one or the other of the template structures as
possible while also satisfying stereochemical restraints (e.g., bond lengths, angles, non-bonded atom contacts, . . .);
the inserted regions, which do not have any equivalent segments in any of the templates, are modeled in the context
of the whole molecule, but using their sequence alone. This way of deriving a model means that whenever a user

https://salilab.org/modeller//documentation.html
https://salilab.org/bioinformatics_resources.shtml
https://salilab.org/modweb/
https://salilab.org/modloop/

1.6. USING MODELLER FOR COMPARATIVE MODELING 9

aligns a target residue with a template residue, he tells Modeller to treat the aligned residues as structurally
equivalent. Command Alignment.check() can be used to find some trivial alignment mistakes.

Script file

Modeller is a command-line only tool, and has no graphical user interface; instead, you must provide it with a
script file containing Modeller commands. This is an ordinary Python script.

If you are not familiar with Python, you can simply adapt one of the many examples in the examples

directory, or look at the code for the classes used by Modeller itself, in the modlib/modeller direc-
tory. Finally, there are many resources for learning Python itself, such as a comprehensive tutorial at
https://docs.python.org/3/tutorial/index.html.

A sample script file model-default.py to produce one model of sequence 1fdx from the known structure of
5fd1 and from the alignment between the two sequences is

Comparative modeling by the AutoModel class

from modeller import * # Load standard Modeller classes

from modeller.automodel import * # Load the AutoModel class

log.verbose() # request verbose output

env = Environ() # create a new MODELLER environment to build this model in

directories for input atom files

env.io.atom_files_directory = [’.’, ’../atom_files’]

a = AutoModel(env,

alnfile = ’alignment.ali’, # alignment filename

knowns = ’5fd1’, # codes of the templates

sequence = ’1fdx’) # code of the target

a.starting_model= 1 # index of the first model

a.ending_model = 1 # index of the last model

(determines how many models to calculate)

a.make() # do the actual comparative modeling

See Chapter 2 for more information about the AutoModel class, and a more detailed explanation of what this
script does.

1.6.2 Running Modeller

To run Modeller with the script file model-default.py above, do the following:

1. Open a command line prompt:

• On Linux/Unix: ssh to the machine, or open an xterm or GNOME Terminal.

• On Windows: Click on the ‘Modeller’ link on your Start Menu. This will give you a Windows Command
Prompt, set up for you to run Modeller.

• On Mac OS X: ssh to the machine, or open the Terminal application.

2. Change to the directory containing the script and alignment files you created earlier, using the ’cd’ command.

3. Run Modeller itself by typing the following at the command prompt:

python3 model-default.py > model-default.log

(Note that if you don’t have Python installed on your machine, you can run the last step by typing ’mod10.8
model-default.py’ instead.)

A number of intermediary files are created as the program proceeds. After about 10 seconds on a modern PC,
the final 1fdx model is written to file 1fdx.B99990001.pdb. Examine the model-default.log file for information

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://docs.python.org/3/tutorial/index.html
https://www.python.org/

10 CHAPTER 1. INTRODUCTION

about the run. In particular, one should always check the output of the Alignment.check() command, which
you can find by searching for ‘check a’. Also, check for warning and error messages by searching for ‘W>’ and ‘E>’,
respectively. There should be no error messages; most often, there are some warning messages that can usually be
ignored.

(Modeller should work just like an ordinary Python module without any additional setup on Mac OS, Win-
dows with any version of Python between 2.3 and 3.14, or using the RPM install on Linux with any version of
Python between 2.3 and 3.14. On other systems, you may need to set the PYTHONPATH and LD LIBRARY PATH vari-
ables, or create symlinks to the relevant directories, so that your system can find the Modeller Python modules
and dynamic libraries, respectively.)

https://www.python.org/
https://www.python.org/

Chapter 2

Automated comparative modeling with
AutoModel

The simplest way to build comparative models with Modeller is to use the AutoModel class. This automates
many of the steps required for simple modeling, and can be customized for more complex tasks. A related class,
LoopModel, also allows for refinement of loop regions.

See section A.4 for a flowchart of the comparative modeling procedure, and section A.5 for an overview of the
loop modeling algorithm.

This chapter gives an overview of simple applications of the AutoModel class. For more detailed information,
see the comparative modeling class reference, in Chapter 4, or the comments in the Python files themselves,
modlib/modeller/automodel/automodel.py and modlib/modeller/automodel/loopmodel.py.

2.1 Simple usage

The simple example below constructs a single comparative model for the 1fdx sequence from the known 5fd1

structure, using alignment.ali, a PIR format alignment of 5fd1 and 1fdx. The final model is written into the
PDB file 1fdx.B99990001.pdb. See Section 1.6.2 for instructions on how to run this script.

Example: examples/automodel/model-default.py

Comparative modeling by the AutoModel class

from modeller import * # Load standard Modeller classes

from modeller.automodel import * # Load the AutoModel class

log.verbose() # request verbose output

env = Environ() # create a new MODELLER environment to build this model in

directories for input atom files

env.io.atom_files_directory = [’.’, ’../atom_files’]

a = AutoModel(env,

alnfile = ’alignment.ali’, # alignment filename

knowns = ’5fd1’, # codes of the templates

sequence = ’1fdx’) # code of the target

a.starting_model= 1 # index of the first model

a.ending_model = 1 # index of the last model

(determines how many models to calculate)

a.make() # do the actual comparative modeling

11

https://www.python.org/
https://salilab.org/modeller/examples/automodel/model-default.py

12 CHAPTER 2. AUTOMATED COMPARATIVE MODELING WITH AUTOMODEL

Example: examples/automodel/alignment.ali

C; A sample alignment in the PIR format; used in tutorial

>P1;5fd1

structureX:5fd1:1 :A:106 :A:ferredoxin:Azotobacter vinelandii: 1.90: 0.19

AFVVTDNCIKCKYTDCVEVCPVDCFYEGPNFLVIHPDECIDCALCEPECPAQAIFSEDEVPEDMQEFIQLNAELA

EVWPNITEKKDPLPDAEDWDGVKGKLQHLER*

>P1;1fdx

sequence:1fdx:1 :A:54 :A:ferredoxin:Peptococcus aerogenes: 2.00:-1.00

AYVINDSC--IACGACKPECPVNIIQGS--IYAIDADSCIDCGSCASVCPVGAPNPED-----------------

-------------------------------*

Stepping through the script, first we load the AutoModel class, using standard Python syntax to load a module.
Next, we request verbose output (see Section 6.31) so that we can more easily spot errors. We then create
an Environ() object (see Section 6.2) and call it env. This object holds the Modeller ‘environment’, which
comprises default values for many parameters, as well as the libraries used for comparative modeling (topology,
parameters, dihedral classes, etc). An Environ object is needed to create most other Modeller objects, but you
can call it whatever you like (it doesn’t have to be called env).

Once we have the Environ object, we can set some global parameters. In this case, we set
IOData.atom files directory to set the directories to look for PDB files in.

Next, we create an AutoModel object, tell it which PIR alignment file to use, and which sequences are templates
and which one we want to build a model for, and call it a. This doesn’t actually build any models, but creates
the object, ready to be tweaked for our purposes. In this case, we simply tell it to build a single model, by setting
both AutoModel.starting model and AutoModel.ending model to 1. Finally, we actually build the model by running
AutoModel.make().

2.2 More advanced usage

2.2.1 Including water molecules, HETATM residues, and hydrogen atoms

If your template contains a ligand or other non-protein residues (e.g. DNA or RNA, or anything marked as
HETATM in the PDB file) then Modellercan transfer this into your generated model. This is done by using
the BLK (’.’) residue type in your alignment (both in the template(s) and the model sequence) to copy the ligand
residue(s) as a rigid body into the model. In most cases, you should also set env.io.hetatm to True, which instructs
Modeller to read HETATM records from your template PDB files; by default all HETATM records are ignored.

Example: examples/automodel/model-ligand.py

Comparative modeling with ligand transfer from the template

from modeller import * # Load standard Modeller classes

from modeller.automodel import * # Load the AutoModel class

log.verbose() # request verbose output

env = Environ() # create a new MODELLER environment to build this model in

directories for input atom files

env.io.atom_files_directory = [’.’, ’../atom_files’]

Read in HETATM records from template PDBs

env.io.hetatm = True

a = AutoModel(env,

../examples/automodel/alignment.ali
https://www.python.org/
https://salilab.org/modeller/examples/automodel/model-ligand.py

2.2. MORE ADVANCED USAGE 13

alnfile = ’align-ligand.ali’, # alignment filename

knowns = ’5fd1’, # codes of the templates

sequence = ’1fdx’) # code of the target

a.starting_model= 4 # index of the first model

a.ending_model = 4 # index of the last model

(determines how many models to calculate)

a.make() # do the actual comparative modeling

Example: examples/automodel/align-ligand.ali

C; Similar to alignment.ali, but with ligands included

>P1;5fd1

structureX:5fd1:1 :A:108 :A:ferredoxin:Azotobacter vinelandii: 1.90: 0.19

AFVVTDNCIKCKYTDCVEVCPVDCFYEGPNFLVIHPDECIDCALCEPECPAQAIFSEDEVPEDMQEFIQLNAELA

EVWPNITEKKDPLPDAEDWDGVKGKLQHLER..*

>P1;1fdx

sequence:1fdx:1 :A:56 :A:ferredoxin:Peptococcus aerogenes: 2.00:-1.00

AYVINDSC--IACGACKPECPVNIIQGS--IYAIDADSCIDCGSCASVCPVGAPNPED-----------------

-------------------------------..*

Note that by turning on env.io.hetatm, all HETATM records are read from your templates, so all of these must
be listed in your alignment. Use a single ’.’ character for each HETATM residue in the template sequence in your
alignment.1 Modeller always reads PDB residues in the order they’re written in the PDB file, so if you have a
ligand at the end of PDB file, put the ’.’ residue at the end of the sequence in the alignment too. You will also
need to modify the residue range in the alignment header to tell Modeller to read the ligands from the PDB file
- in this case the range is changed from 106:A (in Section 2.1) to 108:A, as the two residues are numbered 107 and
108 in the A chain. You will often see a chain break (’/’) immediately preceding ’.’ residues in example alignments.
That’s only necessary if you want to force the ligands to have a different chain ID to the amino acids. (If you want
them in the same chain, leave out the chain break.)

To get the ligand into your model, you must align a residue in the model with the desired residue in the template.
Use a single ’.’ residue in your model sequence in your alignment for each ligand you want in the model. This must
be aligned with a suitable ligand in the template sequence. If you have extra HETATM ligands in the template
which you don’t want in the model, simply align them with a gap (’-’) in the model sequence. If you have multiple
templates, you can copy ligands from any suitable template — just align the ’.’ residue in the model with the
desired template sequence ligand.

AutoModel builds restraints on these ligands to keep their geometry and environment reasonably similar to the
template, by restraining some intra-ligand, inter-ligand, and ligand-protein distances to their template values. See
AutoModel.nonstd restraints() for more information.

You can also treat ligands flexibly by defining topology and parameter information. See
section 5.2.1 for more information, and the example in the advanced modeling tutorial, at
https://salilab.org/modeller/tutorial/advanced.html.

If you want to add ligands to your model which are not present in your template, you will need to do some
docking studies, which are beyond the scope of the Modeller program.

To read in water residues, set env.io.water to True and use the ’w’ residue type in your alignment.

To read in hydrogen atoms, set env.io.hydrogen to True. This is not generally necessary, as if you want to build
an all hydrogen model, it is easiest just to use the AllHModel class, which turns this on for you automatically; see
section 2.2.5.

1If the residue type is defined in ’modlib/restyp.lib’ you can use the 1-letter code that is specified there, but if in doubt use ’.’,
since that matches everything.

../examples/automodel/align-ligand.ali
https://salilab.org/modeller/tutorial/advanced.html

14 CHAPTER 2. AUTOMATED COMPARATIVE MODELING WITH AUTOMODEL

2.2.2 Changing the default optimization and refinement protocol

See Section A.4 for a detailed description of the optimization and refinement protocol used by AutoModel. To
summarize, each model is first optimized with the variable target function method (VTFM) with conjugate gradients
(CG), and is then refined using molecular dynamics (MD) with simulated annealing (SA) [Šali & Blundell, 1993].
Most of the time (70%) is spent on the MD&SA part. Our experience is that when MD&SA are used, if there are
violations in the best of the 10 models, they probably come from an alignment error, not an optimizer failure (if
there are no insertions longer than approximately 15 residues).

The VTFM step can be tuned by adjusting AutoModel.library schedule, AutoModel.max var iterations, and
AutoModel.max molpdf.

The MD&SA step can be tuned by adjusting AutoModel.md level.

The whole optimization can be repeated multiple times if desired (by default it is run only once) by adjusting
AutoModel.repeat optimization.

The energy function used in both VTFM and MD&SA can be scaled by setting Environ.schedule scale. (Note
that for VTFM, the function is additionally scaled by the factors set in AutoModel.library schedule.)

Example: examples/automodel/model-changeopt.py

Example of changing the default optimization schedule

from modeller import *

from modeller.automodel import *

log.verbose()

env = Environ()

Give less weight to all soft-sphere restraints:

env.schedule_scale = physical.Values(default=1.0, soft_sphere=0.7)

env.io.atom_files_directory = [’.’, ’../atom_files’]

a = AutoModel(env, alnfile=’alignment.ali’, knowns=’5fd1’, sequence=’1fdx’)

a.starting_model = a.ending_model = 1

Very thorough VTFM optimization:

a.library_schedule = autosched.slow

a.max_var_iterations = 300

Thorough MD optimization:

a.md_level = refine.slow

Repeat the whole cycle 2 times and do not stop unless obj.func. > 1E6

a.repeat_optimization = 2

a.max_molpdf = 1e6

a.make()

2.2.3 Getting a very fast and approximate model

To get an approximate model very quickly (to get a rough idea of what it looks like, or to confirm that the
alignment is reasonable) call the AutoModel.very fast() method before AutoModel.make(). This uses only a
very limited amount of variable target function optimization with conjugate gradients, and thus is roughly 3 times
faster than the default procedure.

Note that no randomization of the starting structure is done in this case, so only a single model can be produced.

https://salilab.org/modeller/examples/automodel/model-changeopt.py

2.2. MORE ADVANCED USAGE 15

This example also demonstrates the use of the assess methods keyword, to request model assessment. In this
case the GA341 method is requested. See section 4.1.1.

Example: examples/automodel/model-fast.py

Very fast comparative modeling by the AutoModel class

from modeller import *

from modeller.automodel import * # Load the AutoModel class

#from modeller import soap_protein_od

log.verbose()

env = Environ()

directories for input atom files

env.io.atom_files_directory = [’.’, ’../atom_files’]

a = AutoModel(env,

alnfile=’alignment.ali’, # alignment filename

knowns=’5fd1’, # codes of the templates

sequence=’1fdx’, # code of the target

assess_methods=assess.GA341) # request GA341 model assessment

assess_methods=(assess.GA341, assess.DOPE)) # GA341 and DOPE

assess_methods=soap_protein_od.Scorer()) # assess with SOAP

a.very_fast() # prepare for extremely fast optimization

a.starting_model = 2

a.ending_model = 2

a.final_malign3d = True

a.make() # make the comparative model

2.2.4 Building a model from multiple templates

It is straightforward a to build a model using information from multiple templates — simply provide an alignment
between all of the templates and your target sequence, and list all of the templates in the knowns argument, as
demonstrated below. Modeller will automatically combine the templates; there is no need to superpose the
structures (although you can request that this is done by setting AutoModel.initial malign3d).

Example: examples/automodel/model-multiple.py

Comparative modeling with multiple templates

from modeller import * # Load standard Modeller classes

from modeller.automodel import * # Load the AutoModel class

log.verbose() # request verbose output

env = Environ() # create a new MODELLER environment to build this model in

directories for input atom files

env.io.atom_files_directory = [’.’, ’../atom_files’]

a = AutoModel(env,

alnfile = ’align-multiple.ali’, # alignment filename

knowns = (’5fd1’, ’1bqx’), # codes of the templates

sequence = ’1fdx’) # code of the target

https://salilab.org/modeller/examples/automodel/model-fast.py
https://salilab.org/modeller/examples/automodel/model-multiple.py

16 CHAPTER 2. AUTOMATED COMPARATIVE MODELING WITH AUTOMODEL

a.starting_model= 1 # index of the first model

a.ending_model = 1 # index of the last model

(determines how many models to calculate)

a.make() # do the actual comparative modeling

Example: examples/automodel/align-multiple.ali

C; A multiple alignment in the PIR format; used in tutorial

>P1;5fd1

structureX:5fd1:1 :A:106 :A:ferredoxin:Azotobacter vinelandii: 1.90: 0.19

AFVVTDNCIKCKYTDCVEVCPVDCFYEGPNFLVIHPDECIDCALCEPECPAQAIFSEDEVPEDMQEFIQLNAELA

EVWPNITEKKDPLPDAEDWDGVKGKLQHLER*

>P1;1bqx

structureN:1bqx: 1 :A: 77 :A:ferredoxin:Bacillus schlegelii:-1.00:-1.00

AYVITEPCIGTKCASCVEVCPVDCIHEGEDQYYIDPDVCIDCGACEAVCPVSAIYHEDFVPEEWKSYIQKNRDFF

KK-----------------------------*

>P1;1fdx

sequence:1fdx:1 : :54 : :ferredoxin:Peptococcus aerogenes: 2.00:-1.00

AYVINDSC--IACGACKPECPVNIIQGS--IYAIDADSCIDCGSCASVCPVGAPNPED-----------------

-------------------------------*

2.2.5 Building an all hydrogen model

This is done by using the AllHModel class rather than AutoModel. Otherwise, operation is identical. Note that the
AllHModel class automatically turns on env.io.hydrogen for you and selects the all-atom topology and radii files.

Example: examples/automodel/model-default-allh.py

from modeller import *

from modeller.automodel import *

log.verbose()

env = Environ()

env.io.atom_files_directory = [’.’, ’../atom_files’]

a = AllHModel(env, alnfile=’alignment.ali’, knowns=’5fd1’, sequence=’1fdx’)

a.starting_model = a.ending_model = 4

a.make()

2.2.6 Refining only part of the model

The AutoModel class contains a AutoModel.select atoms() function which selects the atoms to be moved during
optimization. By default, the routine selects all atoms, but you can redefine it to select any subset of atoms, and

../examples/automodel/align-multiple.ali
https://salilab.org/modeller/examples/automodel/model-default-allh.py

2.2. MORE ADVANCED USAGE 17

then only those atoms will be refined. (To redefine the routine, it is necessary to create a ‘subclass’ of AutoModel,
here called MyModel, which has the modified routine within it. We then use MyModel in place of AutoModel. The
select atoms routine should return a Selection object; see Section 6.9 for further information.)

In this particular case, we use the Model.residue range() function to select residues 1 and 2 from the first
(A) chain. See Section 6.17.10 for ways to specify residues, and Selection() for other examples of selecting atoms
or residues. Please note that the residue numbers and chain IDs refer to the built model, not to the template(s).
This is because template PDB residue numbering can be inconsistent, and in the case where you have two or
more templates, residues from different parts of the sequence coming from different templates could have the same
number. Modeller always names the model residues consistently, counting up from 1. Chain IDs A, B, C, etc
are assigned2. If in doubt about residue numbering, first build a model using the simple script in section 2.1, and
then look at the final model (or the initial unoptimized .ini model) for the residue numbering.

By default, the selected atoms will “feel” the presence of other atoms via all the static and possibly dynamic
restraints that include both selected and un-selected atoms. However, you can turn off dynamic interactions between
the selected and unselected regions by setting EnergyData.nonbonded sel atoms to 2 (by default it is 1).

The difference between this script and the one for loop modeling is that here the selected regions are opti-
mized with the default optimization protocol and the default restraints, which generally include template-derived
restraints. In contrast, the loop modeling routine does not use template-dependent restraints, but does a much
more thorough optimization.

Example: examples/automodel/model-segment.py

Comparative modeling by the AutoModel class

#

Demonstrates how to refine only a part of the model.

#

You may want to use the more exhaustive "loop" modeling routines instead.

#

from modeller import *

from modeller.automodel import * # Load the AutoModel class

log.verbose()

Override the ’select_atoms’ routine in the ’AutoModel’ class:

(To build an all-hydrogen model, derive from AllHModel rather than AutoModel

here.)

class MyModel(AutoModel):

def select_atoms(self):

Select residues 1 and 2 in chain A (PDB numbering)

return Selection(self.residue_range(’1:A’, ’2:A’))

Residues 4, 6, 10 in chain A:

return Selection(self.residues[’4:A’], self.residues[’6:A’],

self.residues[’10:A’])

All residues except 1-5 in chain A:

return Selection(self) - Selection(self.residue_range(’1:A’, ’5:A’))

env = Environ()

directories for input atom files

env.io.atom_files_directory = [’.’, ’../atom_files’]

selected atoms do not feel the neighborhood

env.edat.nonbonded_sel_atoms = 2

2After uppercase letters A-Z are used, chain IDs 0 through 9 are assigned, then lowercase letters a-z. If your protein contains more
than 62 chains, the remaining chains are given no IDs.

https://salilab.org/modeller/examples/automodel/model-segment.py

18 CHAPTER 2. AUTOMATED COMPARATIVE MODELING WITH AUTOMODEL

Be sure to use ’MyModel’ rather than ’AutoModel’ here!

a = MyModel(env,

alnfile = ’alignment.ali’, # alignment filename

knowns = ’5fd1’, # codes of the templates

sequence = ’1fdx’) # code of the target

a.starting_model= 3 # index of the first model

a.ending_model = 3 # index of the last model

(determines how many models to calculate)

a.make() # do comparative modeling

2.2.7 Including disulfide bridges

If there is an equivalent disulfide bridge in any of the templates aligned with the target, AutoModel will automatically
generate appropriate disulfide bond restraints3 for you (by using the Model.patch ss templates() command).

Explicit manual restraints can be added by the Model.patch() command using the Charmm topology file
DISU patching residue. You must redefine the AutoModel.special patches() routine to add these or other
patches.

It is better to use Model.patch ss templates() rather than Model.patch() where possible because the dihe-
dral angles are restrained more precisely by using the templates than by using the general rules of stereochemistry.

Some Charmm parameter files have a multiple dihedral entry for the disulfide dihedral angle χ3 that consists
of three individual entries with periodicities of 1, 2 and 3. This is why you see three feature restraints for a single
disulfide in the output of the Selection.energy() command.

Note that the residue numbers that you patch refer to the model, not the templates. See Section 2.2.6 for more
discussion.

Example: examples/automodel/model-disulfide.py

Comparative modeling by the AutoModel class

from modeller import * # Load standard Modeller classes

from modeller.automodel import * # Load the AutoModel class

Redefine the special_patches routine to include the additional disulfides

(this routine is empty by default):

class MyModel(AutoModel):

def special_patches(self, aln):

A disulfide between residues 8 and 45 in chain A:

self.patch(residue_type=’DISU’, residues=(self.residues[’8:A’],

self.residues[’45:A’]))

log.verbose() # request verbose output

env = Environ() # create a new MODELLER environment to build this model in

directories for input atom files

env.io.atom_files_directory = [’.’, ’../atom_files’]

a = MyModel(env,

alnfile = ’alignment.ali’, # alignment filename

knowns = ’5fd1’, # codes of the templates

3The restraints include bond, angle and dihedral angle restraints. The SG — SG atom pair also becomes an excluded atom pair that
is not checked for an atom–atom overlap. The χi dihedral angle restraints will depend on the conformation of the equivalent disulfides
in the template structure, as described in [Šali & Overington, 1994].

https://salilab.org/modeller/examples/automodel/model-disulfide.py

2.2. MORE ADVANCED USAGE 19

sequence = ’1fdx’) # code of the target

a.starting_model= 1 # index of the first model

a.ending_model = 1 # index of the last model

(determines how many models to calculate)

a.make() # do the actual comparative modeling

2.2.8 Generating new-style PDBx/mmCIF outputs

By default, the models generated are traditional format PDB files. These have the advantage that many viewers
and tools that use these files exist. However, PDB files are being phased out in favor of the mmCIF format (also
known as PDBx). mmCIF has a number of advantages, one of which is that it can store large structures that would
otherwise need to be split between several PDB files. Another is that the file format supports a broader range
of metadata than PDB (such as information on the templates and alignment used in the modeling) which can be
useful if the models are deposited in a database.

To use mmCIF files as templates, you don’t need to do anything special – Modeller will read templates in
PDB, mmCIF, or BinaryCIF format.

To have Modeller output models in mmCIF format, simply call AutoModel.set output model format().

Example: examples/automodel/model-cif.py

Comparative modeling by the AutoModel class, generating mmCIF outputs

from modeller import * # Load standard Modeller classes

from modeller.automodel import * # Load the AutoModel class

log.verbose() # request verbose output

env = Environ() # create a new MODELLER environment to build this model in

directories for input atom files

env.io.atom_files_directory = [’.’, ’../atom_files’]

a = AutoModel(env,

alnfile = ’alignment.ali’, # alignment filename

knowns = ’5fd1’, # codes of the templates

sequence = ’1fdx’) # code of the target

a.starting_model= 1 # index of the first model

a.ending_model = 1 # index of the last model

(determines how many models to calculate)

a.set_output_model_format("MMCIF") # request mmCIF rather than PDB outputs

a.make() # do the actual comparative modeling

2.2.9 Providing your own restraints file

To force AutoModel not to construct restraints at all, but to instead use your own restraints file, simply use the
csrfile keyword when creating the AutoModel class, as in the example below. Note that Modeller does only
rudimentary checking on your restraints file, so you must be careful that it applies correctly to the generated model.

Example: examples/automodel/model-myrsr.py

Modeling using a provided restraints file (csrfile)

from modeller import *

from modeller.automodel import * # Load the AutoModel class

https://salilab.org/modeller/examples/automodel/model-cif.py
https://salilab.org/modeller/examples/automodel/model-myrsr.py

20 CHAPTER 2. AUTOMATED COMPARATIVE MODELING WITH AUTOMODEL

log.verbose()

env = Environ()

directories for input atom files

env.io.atom_files_directory = [’.’, ’../atom_files’]

a = AutoModel(env,

alnfile = ’alignment.ali’, # alignment filename

knowns = ’5fd1’, # codes of the templates

sequence = ’1fdx’, # code of the target

csrfile = ’my.rsr’) # use ’my’ restraints file

a.starting_model= 1 # index of the first model

a.ending_model = 1 # index of the last model

(determines how many models to calculate)

a.make() # do comparative modeling

2.2.10 Using your own initial model

Normally, AutoModel generates an initial model by transferring coordinates from the templates. However, if you
have a prepared PDB file containing an initial model, you can have AutoModel use this instead with the inifile

keyword, as in the example below. (This automatically sets AutoModel.generate method to generate.read xyz

for you, which is necessary for this to work.) This can be useful if the default initial model (.ini file) is so bad
that the optimizer cannot efficiently optimize it. Of course, the primary sequence of this structure must match the
target’s exactly.

Note that when the initial model file is read, the range of residues to read from the PDB file is taken from the
alignment file header for the sequence. Therefore, you should set that range accordingly (in the example below,
the header for the 1fdx sequence alignment.ali is set to instruct Modeller to read residues 1 through 54 from
the ’A’ chain).

Example: examples/automodel/model-myini.py

Comparative using a provided initial structure file (inifile)

from modeller import *

from modeller.automodel import * # Load the AutoModel class

log.verbose()

env = Environ()

directories for input atom files

env.io.atom_files_directory = [’.’, ’../atom_files’]

a = AutoModel(env,

alnfile = ’alignment.ali’, # alignment filename

knowns = ’5fd1’, # codes of the templates

sequence = ’1fdx’, # code of the target

inifile = ’my-initial.pdb’) # use ’my’ initial structure

a.starting_model= 1 # index of the first model

a.ending_model = 1 # index of the last model

(determines how many models to calculate)

a.make() # do comparative modeling

https://salilab.org/modeller/examples/automodel/model-myini.py

2.2. MORE ADVANCED USAGE 21

2.2.11 Adding additional restraints to the defaults

You can add your own restraints to the restraints file, with the homology-derived restraints, by redefining the
AutoModel.special restraints() routine (by default it does nothing). This can be used, for example, to add
information from NMR experiments or to add regions of known secondary structure. Symmetry restraints, excluded
pairs, or rigid body definitions can also be added in this routine (see Section 2.2.12 for a symmetry example). The
example below enforces an additional restraint on a single CA-CA distance, adds some known secondary structure,
and shows how to add restraints from a file. (See Section 5.3 for further information on how to specify restraints,
and Section 6.8 for details on secondary structure restraints.)

Note that the residue numbers for any restraints refer to the model, not the templates. See Section 2.2.6 for
more discussion.

Example: examples/automodel/model-addrsr.py

Addition of restraints to the default ones

from modeller import *

from modeller.automodel import * # Load the AutoModel class

log.verbose()

env = Environ()

directories for input atom files

env.io.atom_files_directory = [’.’, ’../atom_files’]

class MyModel(AutoModel):

def special_restraints(self, aln):

rsr = self.restraints

at = self.atoms

Add some restraints from a file:

rsr.append(file=’my_rsrs1.rsr’)

Residues 20 through 30 should be an alpha helix:

rsr.add(secondary_structure.Alpha(self.residue_range(’20:A’, ’30:A’)))

Two beta-strands:

rsr.add(secondary_structure.Strand(self.residue_range(’1:A’, ’6:A’)))

rsr.add(secondary_structure.Strand(self.residue_range(’9:A’, ’14:A’)))

An anti-parallel sheet composed of the two strands:

rsr.add(secondary_structure.Sheet(at[’N:1:A’], at[’O:14:A’],

sheet_h_bonds=-5))

Use the following instead for a *parallel* sheet:

rsr.add(secondary_structure.Sheet(at[’N:1:A’], at[’O:9:A’],

sheet_h_bonds=5))

Restrain the specified CA-CA distance to 10 angstroms (st. dev.=0.1)

Use a harmonic potential and X-Y distance group.

rsr.add(forms.Gaussian(group=physical.xy_distance,

feature=features.Distance(at[’CA:35:A’],

at[’CA:40:A’]),

mean=10.0, stdev=0.1))

a = MyModel(env,

alnfile = ’alignment.ali’, # alignment filename

knowns = ’5fd1’, # codes of the templates

sequence = ’1fdx’) # code of the target

a.starting_model= 1 # index of the first model

a.ending_model = 1 # index of the last model

https://salilab.org/modeller/examples/automodel/model-addrsr.py

22 CHAPTER 2. AUTOMATED COMPARATIVE MODELING WITH AUTOMODEL

(determines how many models to calculate)

a.make() # do comparative modeling

2.2.12 Building multi-chain models

Modeller can build models of multi-chain proteins in exactly the same way as single-chain models; simply add
one or more chain break (’/’) characters to your alignment file in the appropriate locations.

(You can also build multimeric models from monomeric templates (just use gaps in your alignment for the
missing chains in your templates). However, note that since Modeller will have no information about the
interfaces between your monomers in this case, your models will probably be poor, so you will have to add additional
distance restraints, or find a multimeric template.)

The example below builds a model of a homodimer, and also constrains the two chains to have
similar conformations by use of symmetry restraints. Just as for the example in Section 2.2.11, this
involves redefining the AutoModel.special restraints() routine. In this case we also redefine the
AutoModel.user after single model() routine, to print some information about the symmetry restraints after
building each model. To build a model of a heterodimer, simply omit this additional restraint.

Example: examples/automodel/model-multichain-sym.py

Comparative modeling by the AutoModel class

#

Demonstrates how to build multi-chain models, and symmetry restraints

#

from modeller import *

from modeller.automodel import * # Load the AutoModel class

log.verbose()

Override the ’special_restraints’ and ’user_after_single_model’ methods:

class MyModel(AutoModel):

def special_restraints(self, aln):

Constrain the A and B chains to be identical (but only restrain

the C-alpha atoms, to reduce the number of interatomic distances

that need to be calculated):

s1 = Selection(self.chains[’A’]).only_atom_types(’CA’)

s2 = Selection(self.chains[’B’]).only_atom_types(’CA’)

self.restraints.symmetry.append(Symmetry(s1, s2, 1.0))

def user_after_single_model(self):

Report on symmetry violations greater than 1A after building

each model:

self.restraints.symmetry.report(1.0)

env = Environ()

directories for input atom files

env.io.atom_files_directory = [’.’, ’../atom_files’]

Be sure to use ’MyModel’ rather than ’AutoModel’ here!

a = MyModel(env,

alnfile = ’twochain.ali’ , # alignment filename

knowns = ’2abx’, # codes of the templates

sequence = ’1hc9’) # code of the target

a.starting_model= 1 # index of the first model

https://salilab.org/modeller/examples/automodel/model-multichain-sym.py

2.2. MORE ADVANCED USAGE 23

a.ending_model = 1 # index of the last model

(determines how many models to calculate)

a.make() # do comparative modeling

Example: examples/automodel/twochain.ali

C; example for building multi-chain protein models

>P1;2abx

structureX:2abx: 1 :A:74 :B:bungarotoxin:bungarus multicinctus:2.5:-1.00

IVCHTTATIPSSAVTCPPGENLCYRKMWCDAFCSSRGKVVELGCAATCPSKKPYEEVTCCSTDKCNHPPKRQPG/

IVCHTTATIPSSAVTCPPGENLCYRKMWCDAFCSSRGKVVELGCAATCPSKKPYEEVTCCSTDKCNHPPKRQPG*

>P1;1hc9

sequence:1hc9: 1 :A:148:B:undefined:undefined:-1.00:-1.00

IVCHTTATSPISAVTCPPGENLCYRKMWCDVFCSSRGKVVELGCAATCPSKKPYEEVTCCSTDKCNPHPKQRPG/

IVCHTTATSPISAVTCPPGENLCYRKMWCDAFCSSRGKVVELGCAATCPSKKPYEEVTCCSTDKCNPHPKQRPG*

2.2.13 Residues and chains in multi-chain models

Just as Modeller automatically assigns residue numbers starting from 1 for the model sequence, it automati-
cally assigns chain IDs. Chain IDs are assigned alphabetically: A, B, etc. Thus, in the previous example (see
Section 2.2.12) the model contains residues labeled 1 through 74 in chain A, and 75 through 148 in chain B. You
can change this behavior and label the chains and residues yourself by calling Model.rename segments() from
within the AutoModel.special patches() method.

You must always specify the chain ID when referring to an atom (see Model.atoms) or residue (see
Sequence.residues). Modeller will not ’guess’ the chain for you if you leave it out. For example, the CA atom in
residue 30 in chain B can be specified with the identifier ’CA:30:B’.

In the example below, the model is relabeled to contain residues 1 through 74 in chain X and 1 through 74 in
chain Y. A user-defined restraint is also added between two atoms in the new chain Y. Note that in this example
the two chains are not constrained to be symmetric; however, the symmetry restraint from the previous example
can be added in if desired.

Example: examples/automodel/model-multichain.py

Comparative modeling by the AutoModel class

#

Demonstrates how to build multi-chain models

#

from modeller import *

from modeller.automodel import * # Load the AutoModel class

log.verbose()

class MyModel(AutoModel):

def special_patches(self, aln):

Rename both chains and renumber the residues in each

self.rename_segments(segment_ids=[’X’, ’Y’],

renumber_residues=[1, 1])

Another way to label individual chains:

self.chains[0].name = ’X’

../examples/automodel/twochain.ali
https://salilab.org/modeller/examples/automodel/model-multichain.py

24 CHAPTER 2. AUTOMATED COMPARATIVE MODELING WITH AUTOMODEL

self.chains[1].name = ’Y’

def special_restraints(self, aln):

rsr = self.restraints

at = self.atoms

Restrain the specified CB-CB distance to 8 angstroms (st. dev.=0.1)

Use a harmonic potential and X-Y distance group.

Note that because special_patches is called before special_restraints,

we must use the relabeled chain IDs and residue numbers here.

rsr.add(forms.Gaussian(group=physical.xy_distance,

feature=features.Distance(at[’CB:40:Y’],

at[’CB:71:Y’]),

mean=8.0, stdev=0.1))

env = Environ()

directories for input atom files

env.io.atom_files_directory = [’.’, ’../atom_files’]

Be sure to use ’MyModel’ rather than ’AutoModel’ here!

a = MyModel(env,

alnfile = ’twochain.ali’ , # alignment filename

knowns = ’2abx’, # codes of the templates

sequence = ’1hc9’) # code of the target

a.starting_model= 2 # index of the first model

a.ending_model = 2 # index of the last model

(determines how many models to calculate)

a.make() # do comparative modeling

2.2.14 Accessing output data after modeling is complete

After AutoModel.make() finishes building your model(s), the output data is accessible to your script as
AutoModel.outputs. This variable is an ordinary Python list, one element for each model (so a.outputs[0] refers
to the first model, and so on). Each list element is a Python dictionary of key:value pairs, the most important of
which are:

• ’failure’: the Python value None if no failure occurred (i.e., the model was built successfully). Otherwise,
it is the exception that was raised.

• ’name’: the name of the output PDB file, if no error occurred.

• ’molpdf’: the value of the Modeller objective function, if no error occurred.

• ’pdfterms’: the contributions to the objective function from all physical restraint types (see Section 6.10.1),
if no error occurred.

• ’xxx score’: the value of the assessment score ’xxx’ (e.g., ’GA341 score’, ’DOPE score’).

If you are also building loop models, information for these is made available in LoopModel.loop.outputs.

Example: examples/automodel/model-outputs.py

from modeller import *

from modeller.automodel import *

import sys

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://salilab.org/modeller/examples/automodel/model-outputs.py

2.2. MORE ADVANCED USAGE 25

log.verbose()

env = Environ()

env.io.atom_files_directory = [’.’, ’../atom_files’]

Build 3 models, and assess with both DOPE and GA341

a = AutoModel(env, alnfile = ’alignment.ali’, knowns = ’5fd1’,

sequence = ’1fdx’, assess_methods=(assess.DOPE, assess.GA341))

a.starting_model= 1

a.ending_model = 3

a.make()

Get a list of all successfully built models from a.outputs

ok_models = [x for x in a.outputs if x[’failure’] is None]

Rank the models by DOPE score

key = ’DOPE score’

if sys.version_info[:2] == (2,3):

Python 2.3’s sort doesn’t have a ’key’ argument

ok_models.sort(lambda a,b: cmp(a[key], b[key]))

else:

ok_models.sort(key=lambda a: a[key])

Get top model

m = ok_models[0]

print("Top model: %s (DOPE score %.3f)" % (m[’name’], m[key]))

2.2.15 Fully automated alignment and modeling

If you do not have an initial alignment between your templates and target sequence, Modeller can derive one for
you, fully automatically. All Modeller requires is a a PIR file containing the target sequence and the template
PDB codes (their sequences are not required — just use a single ’*’ character — as Modeller will read these
from the PDBs). Use the AutoModel class as per usual, but call the AutoModel.auto align() method before
AutoModel.make(); see the example below. (Modeller has a variety of other alignment methods which you
can use instead for this purpose; see Section 6.16 for more details.)

Please be aware that the single most important factor that determines the quality of a model is the quality
of the alignment. If the alignment is incorrect, the model will also be incorrect. For this reason, automated
alignment for comparative modeling should not be used unless the sequences are so similar that the
calculated alignment is likely to be correct, which usually requires more than 50% sequence identity.
Instead, the alignment should be carefully inspected, optimized by hand, and checked by the Alignment.check()
command before used in modeling. Moreover, several iterations of alignment and modeling may be necessary in
general.

Example: examples/automodel/model-full.py

A sample script for fully automated comparative modeling

from modeller import *

from modeller.automodel import * # Load the AutoModel class

log.verbose()

env = Environ()

https://salilab.org/modeller/examples/automodel/model-full.py

26 CHAPTER 2. AUTOMATED COMPARATIVE MODELING WITH AUTOMODEL

directories for input atom files

env.io.atom_files_directory = [’.’, ’../atom_files’]

a = AutoModel(env,

file with template codes and target sequence

alnfile = ’alignment.seg’,

PDB codes of the templates

knowns = (’5fd1’, ’1fdn’, ’1fxd’, ’1iqz’),

code of the target

sequence = ’1fdx’)

a.auto_align() # get an automatic alignment

a.make() # do comparative modeling

Example: examples/automodel/alignment.seg

>P1;1fdx

sequence::::::ferredoxin:Peptococcus aerogenes:-1.00:-1.00

AYVINDSCIACGACKPECPVNIIQGSIYAIDADSCIDCGSCASVCPVGAPNPED*

>P1;1fdn

structureX:1fdn:FIRST:@:55:@:ferredoxin:Clostrodium acidiurici: 1.84:-1.0

*

>P1;5fd1

structureX:5fd1:FIRST:@:60:@:ferredoxin:Azotobacter vinelandii: 1.90:0.192

*

>P1;1fxd

structureX:1fxd:FIRST:@:58:@:ferredoxin:Desolfovibrio gigas: 1.70:-1.0

*

>P1;1iqz

structureX:1iqz:FIRST:@:60:@:ferredoxin:Bacillus thermoproteolyticus: 2.30:-1.0

*

2.3 Loop optimization

Modeller has several loop optimization methods, which all rely on scoring functions and optimization protocols
adapted for loop modeling [Fiser et al., 2000]. They are used to refine loop regions, either automatically after
standard model building, or manually on an existing PDB file.

2.3.1 Automatic loop refinement after model building

To automatically refine loop regions after building standard AutoModel models, simply use the LoopModel class
rather than AutoModel; see the example below.

In many cases, you can obtain better quality loops (at the expense of more computer time) by using the newer
DOPE-based loop modeling protocol. In this case, just use the DOPELoopModel or DOPEHRLoopModel classes in
place of LoopModel in each of the examples below. See Section 4.4 or Section 4.5 for more details.

Example: examples/automodel/model-loop.py

Comparative modeling by the AutoModel class

from modeller import *

from modeller.automodel import * # Load the AutoModel class

../examples/automodel/alignment.seg
https://salilab.org/modeller/examples/automodel/model-loop.py

2.3. LOOP OPTIMIZATION 27

log.verbose()

env = Environ()

directories for input atom files

env.io.atom_files_directory = [’.’, ’../atom_files’]

a = LoopModel(env,

alnfile = ’alignment.ali’, # alignment filename

knowns = ’5fd1’, # codes of the templates

sequence = ’1fdx’) # code of the target

a.starting_model= 1 # index of the first model

a.ending_model = 1 # index of the last model

(determines how many models to calculate)

a.md_level = None # No refinement of model

a.loop.starting_model = 1 # First loop model

a.loop.ending_model = 4 # Last loop model

a.loop.md_level = refine.fast # Loop model refinement level

a.make() # do comparative modeling

After generating the standard model(s), a number of loop models are generated for each model, from
LoopModel.loop.starting model to LoopModel.loop.ending model. Each loop model is written out with the .BL ex-
tension. See section A.5 for more information.

2.3.2 Defining loop regions for refinement

By default, the LoopModel class selects all ‘loop’ regions in your model for refinement, defined as any insertion
in the alignment (i.e., a region of the target where template information is not available). You can override this
and select any set of atoms of your choosing by redefining the LoopModel.select loop atoms() routine. (This
routine should return a Selection object; see Section 2.2.6 or Section 6.9 for further information.)

This example also demonstrates how to automatically assess each generated loop model.

Example: examples/automodel/model-loop-define.py

from modeller import *

from modeller.automodel import *

log.verbose()

env = Environ()

env.io.atom_files_directory = [’.’, ’../atom_files’]

Create a new class based on ’LoopModel’ so that we can redefine

select_loop_atoms

class MyLoop(LoopModel):

This routine picks the residues to be refined by loop modeling

def select_loop_atoms(self):

Two residue ranges (both will be refined simultaneously)

return Selection(self.residue_range(’19:A’, ’28:A’),

self.residue_range(’45:A’, ’50:A’))

a = MyLoop(env,

https://salilab.org/modeller/examples/automodel/model-loop-define.py

28 CHAPTER 2. AUTOMATED COMPARATIVE MODELING WITH AUTOMODEL

alnfile = ’alignment.ali’, # alignment filename

knowns = ’5fd1’, # codes of the templates

sequence = ’1fdx’, # code of the target

loop_assess_methods=assess.DOPE) # assess each loop with DOPE

a.starting_model= 1 # index of the first model

a.ending_model = 1 # index of the last model

a.loop.starting_model = 1 # First loop model

a.loop.ending_model = 2 # Last loop model

a.make() # do modeling and loop refinement

2.3.3 Refining an existing PDB file

All of the loop modeling classes can also be used to refine a region of an existing PDB file, without
comparative modeling, as in the example below. Note that it is necessary in this case to redefine the
LoopModel.select loop atoms() routine, as no alignment is available for automatic loop detection.

Example: examples/automodel/loop.py

Loop refinement of an existing model

from modeller import *

from modeller.automodel import *

#from modeller import soap_loop

log.verbose()

env = Environ()

directories for input atom files

env.io.atom_files_directory = [’.’, ’../atom_files’]

Create a new class based on ’LoopModel’ so that we can redefine

select_loop_atoms (necessary)

class MyLoop(LoopModel):

This routine picks the residues to be refined by loop modeling

def select_loop_atoms(self):

One loop in chain A from residue 19 to 28 inclusive

return Selection(self.residue_range(’19:A’, ’28:A’))

Two loops simultaneously

#return Selection(self.residue_range(’19:A’, ’28:A’),

self.residue_range(’38:A’, ’42:A’))

m = MyLoop(env,

inimodel=’1fdx.B99990001.pdb’, # initial model of the target

sequence=’1fdx’, # code of the target

loop_assess_methods=assess.DOPE) # assess loops with DOPE

loop_assess_methods=soap_loop.Scorer()) # assess with SOAP-Loop

m.loop.starting_model= 20 # index of the first loop model

m.loop.ending_model = 23 # index of the last loop model

m.loop.md_level = refine.very_fast # loop refinement method

m.make()

https://salilab.org/modeller/examples/automodel/loop.py

2.3. LOOP OPTIMIZATION 29

30 CHAPTER 2. AUTOMATED COMPARATIVE MODELING WITH AUTOMODEL

Chapter 3

Frequently asked questions and history

3.1 Frequently asked questions (FAQ) and examples

Please also check the mailing list archives and the release notes.

1. I want to build a model of a chimeric protein based on two known structures. Alternatively,
I want to build a multi-domain protein model using templates corresponding only to the indi-
vidual domains.

This can be accomplished using the standard AutoModel class (see Chapter 2). The alignment should be as
follows when the chimera is a combination of proteins A and B:

proteinA aaaaaaaaaaaaaaaaaaaaaaaaaaaa----------------------------------

proteinB ----------------------------bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

chimera aaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

If no additional information is available about the relative orientation of the two domains the resulting model
will probably have an incorrect relative orientation of the two domains when the overlap between A and B
is non-existing or short. To obtain satisfactory relative orientation of modeled domains in such cases, orient
the two template structures appropriately before the modeling.

2. I don’t want to use one region of a template for construction of my model.

The easiest way to achieve this is to not align that region of the template with the target sequence. If region
’bbbbbbbb’ of the template should not be used as a template for region ’eeeee’ of the target sequence the
alignment should be like this:

template aaaaaaaaaaaaaaaaaaaaaaaa-----bbbbbbbbcccccccccccccccccccccccccccccc

target ddddddddddddddddddddddddeeeee--------ffffffffffffffffffffffffffffff

The effect of this alignment is that no homology-derived restraints will be produced for region ’eeeee’.

3. I want to explicitly force certain Pro residues to the cis ω conformation.

Modeller should usually be allowed to handle this automatically via the omega dihedral angle restraints,
which are calculated by default.

from modeller import *

from modeller.automodel import *

from modeller.scripts import cispeptide

Redefine the special_restraints routine to force Pro to cis conformation:

(this routine is empty by default):

31

https://salilab.org/archives/modeller_usage/
https://salilab.org/modeller/release.html#issues

32 CHAPTER 3. FREQUENTLY ASKED QUESTIONS AND HISTORY

class MyModel(AutoModel):

def special_restraints(self, aln):

a = self.atoms

cispeptide(self.restraints,

atom_ids1=(a[’O:4’], a[’C:4’], a[’N:5’], a[’CA:5’]),

atom_ids2=(a[’CA:4’], a[’C:4’], a[’N:5’], a[’CA:5’]))

This is as usual:

log.verbose()

env = Environ()

a = MyModel(env, alnfile=’align1.ali’, knowns=’templ1’, sequence=’targ1’)

a.make()

4. How can I select/remove/add a set of restraints?

Restraints can be read from a file by Restraints.append(), calculated by Restraints.make()
or Restraints.make distance(), or added “manually” by Restraints.add(). Restraints.pick()
picks those restraints for objective function calculation that restrain the selected atoms only. The
’AutoModel.homcsr()’ routine contains examples of selecting atoms when generating restraints by
Restraints.make distance(). There are also commands for adding and unselecting single restraints,
Restraints.add() and Restraints.unpick(), respectively. If you do Restraints.condense(), the unse-
lected restraints will be deleted. This is useful for getting rid of the unwanted restraints completely.

5. I want to change the default optimization or refinement protocol.

See Section 2.2.2.

6. I want to build an all hydrogen atom model with water molecules and other non-protein atoms
(atoms in the HETATM records in the PDB file).

See Sections 2.2.1 and 2.2.5 for some examples.

from modeller import *

from modeller.automodel import *

log.verbose()

env = Environ()

env.io.hydrogen = env.io.hetatm = env.io.water = True

a = AllHModel(env, alnfile=’align1.ali’, knowns=’templ1’, sequence=’targ1’)

a.make()

7. How do I build a model with water molecules or residues that do not have an entry in the
topology and/or parameter files?

See Section 2.2.1 for an example.

8. How do I define my own residue types, such as D-amino acids, special ligands, and unnatural
amino-acids?

This is a painful area in all molecular modeling programs. However, Charmm and X-PLOR provide a rea-
sonably straightforward solution via the residue topology and parameter libraries. Modeller uses Charmm

topology and parameter library format and also extends the options by allowing for a generic “BLK” residue
type (Section 5.2.1). This BLK residue type circumvents the need for editing any library files, but it is not
always possible to use it. Due to its conformational rigidity, it is also not as accurate as a normal residue
type. In order to define a new residue type in the Modeller libraries, you have to follow the series of steps
described below. As an example, we will define the ALA residue without any hydrogen atoms. You can add
an entry to the Modeller topology or parameter file; you can also use your own topology or parameter files.
For more information, please see the Charmm manual.

3.1. FREQUENTLY ASKED QUESTIONS (FAQ) AND EXAMPLES 33

(a) Define the new residue entry in the residue topology file (RTF), say ’top heav.lib’.

RESI ALA 0.00000

ATOM N NH1 -0.29792

ATOM CA CT1 0.09563

ATOM CB CT3 -0.17115

ATOM C C 0.69672

ATOM O O -0.32328

BOND CB CA N CA O C C CA C +N

IMPR C CA +N O CA N C CB

IC -C N CA C 1.3551 126.4900 180.0000 114.4400 1.5390

IC N CA C +N 1.4592 114.4400 180.0000 116.8400 1.3558

IC +N CA *C O 1.3558 116.8400 180.0000 122.5200 1.2297

IC CA C +N +CA 1.5390 116.8400 180.0000 126.7700 1.4613

IC N C *CA CB 1.4592 114.4400 123.2300 111.0900 1.5461

IC N CA C O 1.4300 107.0000 0.0000 122.5200 1.2297

PATC FIRS NTER LAST CTER

You can obtain an initial approximation to this entry by defining the new residue type using the residue
type editor in Quanta and then writing it to a file.

The RESI record specifies the Charmm residue name, which can be up to four characters long and
is usually the same as the PDB residue name (exceptions are the potentially charged residues where
the different charge states correspond to different Charmm residue types). The number gives the total
residue charge.

The ATOM records specify the IUPAC (i.e., PDB) atom names and the Charmm atom types for all
the atoms in the residue. The number at the end of each ATOM record gives the partial atomic charge.

The BOND records specify all the covalent bonds between the atoms in the residue (e.g., there are bonds
CB–CA, N–CA, O–C, etc.). In addition, symbol ’+’ is used to indicate the bonds to the subsequent
residue in the chain (e.g., C – +N). The covalent angles and dihedral angles are calculated automatically
from the list of chemical bonds.

The IMPR records specify the improper dihedral angles, generally used to restrain the planarity of
various groups (e.g., peptide bonds and sidechain rings). See also below.

The IC (internal coordinate) records are used for constructing the initial Cartesian coordinates of a
residue. An entry

IC a b c d dab αabc Θabcd αbcd dcd

specifies distances d, angles α, and either dihedral angles or improper dihedral angles Θ between atoms
a, b, c and d, given by their IUPAC names. The improper dihedral angle is specified when the third
atom, c, is preceded by a star, ’*’. As before, the ’-’ and ’+’ prefixes for the atom names select
the corresponding atom from the preceding and subsequent residues, respectively. The distances are
in angstroms, angles in degrees. The distinction between the dihedral angles and improper dihedral
angles is unfortunate since they are the same mathematically, except that by convention when using the
equations, the order of the atoms for a dihedral angle is abcd and for an improper dihedral angle it is
acbd.

The PATC record specifies the default patching residue type when the current residue type is the first
or the last residue in a chain.

(b) You have to make sure that all the Charmm atom types of the new residue type occur in the MASS
records at the beginning of the topology library: Add your entry at the end of the MASS list if nec-
essary. If you added any new Charmm atom types, you also have to add them to the radii library,
’modlib/radii.lib’ and to the solvation library, ’modlib/solv.lib’. The radii library lists the
atomic radii for the different topology models, for the long range non-bonded soft-sphere term. The full
name of the file that is used during calculation is given by the environment variable $RADII LIB. Note
that Charmm atom type names can be no longer than four characters! Any name longer than that in
these files will be silently truncated.

34 CHAPTER 3. FREQUENTLY ASKED QUESTIONS AND HISTORY

(c) Optionally, you can add the residue entry to the library of Modeller topology models,
’modlib/models.lib’. The runtime version of this library is specified by the environment variable
$MODELS LIB. This library specifies which subsets of atoms in the residue are used for each of the possi-
ble topologies. Currently, there are 10 topologies selected by Topology.submodel (3 is default):

1 ALLH all atoms
2 POL polar hydrogens only
3 HEAV non-hydrogen atoms only
4 MCCB non-hydrogen mainchain (N, C, CA, O) and CB atoms
5 MNCH non-hydrogen mainchain atoms only
6 MCWO non-hydrogen mainchain atoms without carbonyl O
7 CA CA atoms only
8 MNSS non-hydrogen mainchain atoms and disulfide bonds
9 CA3H reduced model with a small number of sidechain interaction centers
10 CACB CA and CB atoms only

The Ala entry is:

#

ALLH POLH HEAV MCCB MNCH MCWO CA MNSS CA3H CACB

*

RESI ALA

ATOM NH1 NH1 NH1 NH1 NH1 NH1 #### NH1 #### ####

ATOM H HN #### #### #### #### #### #### #### ####

ATOM CT1 CT1 CT1 CT1 CT1 CT1 CT1 CT1 CAH CT1

ATOM HB #### #### #### #### #### #### #### CH3E ####

ATOM CT3 CT3 CT3 CT3 #### #### #### #### #### CT2

ATOM HA #### #### #### #### #### #### #### #### ####

ATOM HA #### #### #### #### #### #### #### #### ####

ATOM HA #### #### #### #### #### #### #### #### ####

ATOM C C C C C C #### C #### ####

ATOM O O O O O #### #### O #### ####

The residue entries in this library are separated by stars. The ’####’ string indicates a missing atom.
The atom names for the present atoms are arbitrary. The order of the atoms must be the same as in
the Charmm residue topology library. If a residue type does not have an entry in this library, all atoms
are used for all topologies.

(d) You have to add the new residue type to the residue type library, ’modlib/restyp.lib’. The execution
version of this file is specified by the environment variable $RESTYP LIB. See the comments in the file
for further information.

Every residue in the Charmm topology file has to have an entry in the $RESTYP LIB library, but not
every residue entry in the $RESTYP LIB library needs an entry in the residue topology file. If you need
to edit the $RESTYP LIB file, it is recommended that you change a copy of it, and provide that file to
the Environ() constructor.

(e) In general, when you add a new residue type, you also add new chemical bonds, angles, dihedral angles,
improper dihedral angles, and non-bonded interactions, new in the sense that a unique combination of
Charmm atoms types is involved whose interaction parameters are not yet specified in the parameter
library (see also Section 5.2.1). In such a case, you will get a number of warning and/or error messages
when you generate the stereochemical restraints by the Restraints.make() command. These messages
can sometimes be ignored because Modeller will guess the values for the missing parameters from
the current Cartesian coordinates of the model. When this is not accurate enough or if the necessary
coordinates are undefined you have to specify the parameters explicitly in the parameter library. Search
for BOND, ANGL, DIHE, and IMPR sections in the parameters library file and use the existing entries to
guess your new entries. Note that you can use dummy atom types ’X’ to create general dihedral (i.e., X
A A X) and improper dihedral angle (i.e., A X X A) entries, where A stands for any of the real Charmm

atom types. For the dihedral angle cosine terms, the Charmm convention for the phase is different for
180◦ from Modeller’s (Eq. A.84). If you use non-bonded Lennard-Jones terms, you also have to add a

3.1. FREQUENTLY ASKED QUESTIONS (FAQ) AND EXAMPLES 35

NONB entry for each new atom type. If you use the default soft-sphere non-bonded restraints, you have
already taken care of it by adding the new atom types to the $RADII LIB and $RADII LIB libraries.

9. How do I define my own patching residue types?

This is even messier than defining a new residue type. As an example, we will define the patching residue for
establishing a disulfide bond between two CYS residues.

PRES DISU -0.36 ! Patch for disulfides. Patch must be 1-CYS and 2-CYS.

ATOM 1:CB CT2 -0.10 !

ATOM 1:SG SM -0.08 ! 2:SG--2:CB--

ATOM 2:SG SM -0.08 ! /

ATOM 2:CB CT2 -0.10 ! -1:CB--1:SG

DELETE ATOM 1:HG

DELETE ATOM 2:HG

BOND 1:SG 2:SG

IC 1:CA 1:CB 1:SG 2:SG 0.0000 0.0000 180.0000 0.0000 0.0000

IC 1:CB 1:SG 2:SG 2:CB 0.0000 0.0000 90.0000 0.0000 0.0000

IC 1:SG 2:SG 2:CB 2:CA 0.0000 0.0000 180.0000 0.0000 0.0000

The PRES record specifies the Charmm patching residue name (up to four characters).

The ATOM records have the same meaning as for the RESI residue types described above. The extension
is that the IUPAC atom names (listed first) must be prefixed by the index of the residue that is patched, if
the patch affects multiple residues. In this example, there are two CYS residues that are patched, thus the
prefixes 1 and 2. When using the Model.patch() command, the order of the patched residues specified by
residues must correspond to these indices (this is only important when the patch is not symmetric, unlike the
’DISU’ patch in this example).

DELETE records specify the atoms to be deleted, the two hydrogens bonded to the two sulfurs in this case.

The BOND and IC (internal coordinate) records are the same as those for the RESI residues, except that the
atom names are prefixed with the patched residue indices.

10. Is it possible to restrain secondary structure in the target sequence?

Yes — see Section 2.2.11 for an example.

11. I want to patch the N-terminal or (C-terminal) residue (e.g., to model acetylation properly),
but the Model.patch() command does not work.

This is probably because the N-terminus is patched by default with the NTER patching residue (corresponding
to –NH3+) and a patched residue must not be patched again. The solution is to turn the default patching
off by env.patch default = False before the Model.generate topology() command is called.

12. Is it possible to use templates with the coordinates for Cα atoms only?

Yes. You do not have to do anything special.

13. How do I analyze the output log file?

First, check for the error messages by searching for string ’ E>’’. These messages can only rarely be ig-
nored. Next, check for the warning messages by searching for string ’ W>’’. These messages can almost
always be ignored. If everything is OK so far, the most important part of the log file is the output of the
Selection.energy() command for each model. This is where the violations of restraints are listed. When
there are too many too violated restraints, more optimization or a different alignment is needed. What is too
many and too much? It depends on the restraint type and is best learned by doing Selection.energy() on
an X-ray structure or a good model to get a feel for it. You may also want to look at the output of command
Alignment.check(), which should be self-explanatory. I usually ignore the other parts of the log file.

14. How do I prevent “knots” in the final models?

The best way to prevent knots is to start with a starting structure that is as close to the desired final model
as possible. Other than that, the only solution at this point is to calculate independently many models

36 CHAPTER 3. FREQUENTLY ASKED QUESTIONS AND HISTORY

and hope that in some runs there won’t be knots. Knots usually occur when one or more neighboring long
insertions (i.e., longer than 15 residues) are modeled from scratch. The reason is that an insertion is built
from a randomized distorted structure that is located approximately between the two anchoring regions.
Under such conditions, it is easy for the optimizer to “fall” into a knot and then not be able to recover from
it. Sometimes knots result from an incorrect alignment, especially when more than one template is used.
When the alignment is correct, knots are a result of optimization not being good enough. However, making
optimization more thorough by increasing the CPU time would not be worth it on the average as knots
occur relatively infrequently. The excluded volume restraints are already included in standard comparative
modeling with the AutoModel class (see Chapter 2).

15. What is considered to be the minimum length of a sequence motif necessary to derive mean-
ingful constraints from the alignment to use in modeling.. one, two, three, or more?

Usually more than that (dozens if you want just to detect reliable similarity, and even more if you want a
real model). It is good to have at least 35-40% sequence identity to build a model. Sometimes even 30% is
OK.

16. Does Modeller have a graphical interface (GUI) ?

No; Modeller is run from the command line, and uses a Python script to direct it. Graphical interfaces to
Modeller are commercially available from BIOVIA. Also, check the links page in the Modeller wiki for GUIs
contributed by Modeller users.

17. What do the ‘Alignment sequence not found in PDB file’ or ‘Number of residues in the align-
ment and pdb files are different’ errors mean?

When you give Modeller an alignment, it also needs to read the structure of the known proteins (templates)
from PDB files. In order to correctly match coordinates to the residues specified in the alignment, the
sequences in the PDB file and the alignment file must be the same (although obviously you can add gap or
chain break characters to your alignment). If they are not, you see this error. (Note that Modeller takes
the PDB sequence from the ATOM and HETATM PDB records, not the SEQRES records.) You should
also check the header of your alignment file, to make sure that you are reading the correct chain and residue
numbers from your PDB.

To see the sequence that Modeller reads from the PDB file ’1BY8.pdb’, use this short script to produce a
’1BY8.seq’ sequence file:

from modeller import *

env = Environ()

If you also want to see HETATM residues, uncomment this line:

#env.io.hetatm = True

code = ’1BY8’

mdl = Model(env, file=code)

aln = Alignment(env)

aln.append_model(mdl, align_codes=code)

aln.write(file=code+’.seq’)

18. Can I make a web interface or GUI for Modeller?

Certainly, although you should bear in mind that the Modeller license is non-transferable, and permits free
usage only for academic purposes.

For web interfaces, users must obtain their own Modeller license key directly from us; your web interface
should provide a text box into which users should put their license key, and then use that input to set the
KEY MODELLER10v8 environment variable, as is done by our own ModWeb and ModLoop interfaces. (Note
that you will first need to edit the file modlib/modeller/config.py in your Modeller installation to remove
the line that sets the license, since this takes precedence over the environment variable setting.)

For GUIs or other interfaces (e.g. frameworks), users should obtain and license Modeller directly from us,
rather than it being bundled with your software.

In all cases, please update the links page in the Modeller wiki, to advertise your software to Modeller users.

https://www.python.org/
https://salilab.org/modeller/nonacademic.html
https://salilab.org/modeller/wiki/Links
https://salilab.org/modeller/registration.html
https://salilab.org/modweb/
https://salilab.org/modloop/
https://salilab.org/modeller/wiki/Links

3.1. FREQUENTLY ASKED QUESTIONS (FAQ) AND EXAMPLES 37

19. I get warnings such as ’Could not find platform independent libraries’, ’import site failed’ or
’No module named socket’

These refer to missing Python modules on your system. In the first two cases, these are just warnings that
can be safely ignored - most Modeller scripts do not need Python modules anyway, and will run successfully.
However, some Modeller scripts, such as the parallel task support, do need modules (such as socket) and will
not function without them. Please refer to the release notes for two possible solutions in this case.

https://salilab.org/modeller/release.html#issues

38 CHAPTER 3. FREQUENTLY ASKED QUESTIONS AND HISTORY

3.2 Modeller updates

3.2.1 Changes since release 10.7

• Add Python 3.14 support.

• mmCIF output now includes assessment score information for AutoModel and LoopModel-produced models
(using the standard ModelCIF tables such as ’ ma qa metric’).

3.2.2 Changes since release 10.6

• mmCIF output now has better support for multiple chains, ligands, DNA/RNA and water, adds chemical
component information and user-provided angle and dihedral restraints, and includes both Modeller (”author-
provided”) residue and chain IDs as well as the mmCIF identifiers (’seq id’, ’asym id’).

• Models can now be read from BinaryCIF format files. Templates can also be provided in BinaryCIF format.

• The default file format for Model.read() has changed from PDB OR MMCIF to PDB ANY. A file with a ’.bcif’

extension will now be read as a BinaryCIF file, one with a ’.cif’ extension will be read as mmCIF, while
all other files will be read as PDB.

• The internal residue name length has been increased from 4 to 10 characters, to better handle the new
5-character PDB residue names.

• Bundled version of HDF5 updated to 1.14.6.

• Bugfix: atom files are now searched for with the ’pdb’ prefix in each directory specified by
IOData.atom files directory before moving on to the next directory; previously this behavior was reversed.

• Bugfix: avoid numerical instability in Model.build() when using internal coordinates that involve colocated
atoms.

• Bugfix: correctly relabel sidechain atoms in chiral amino acids (VAL/THR/LEU/ILE) to get the correct
chirality if necessary.

• Bugfix: author-provided chain IDs and residue numbers are now used when reading sequence from mmCIF
or BinaryCIF, for consistency with reading coordinates.

Chapter 4

Comparative modeling class reference

4.1 AutoModel reference

All of the functions and data members of the AutoModel class are listed for reference below. Please note that
the AutoModel class is derived from the Model class, so all properties and commands of the Model class are also
available. Please see section 6.6 for more information.

4.1.1 AutoModel() — prepare to build one or more comparative models

AutoModel(env, alnfile, knowns, sequence, deviation=None, library schedule=None, csrfile=None,

inifile=None, assess methods=None, root name=None)

alnfile is required, and usually specifies the name of the PIR file which contains an alignment between knowns

(the templates) and sequence (the target sequence).

alnfile can instead be a readable file handle (see modfile.File()) from which the alignment will be read, or an
existing Alignment object containing knowns and sequence. (Note that this is only supported with a subset
of AutoModel functionality; in particular, it does not work with parallel jobs, AutoModel.initial malign3d, or
AutoModel.final malign3d.)

deviation controls the amount of randomization done by randomize.xyz or randomize.dihedrals;
see also AutoModel.rand method. (This can also be set after the object is created, by assigning to
’AutoModel.deviation’. The default is 4Å.)

library schedule, if given, sets an initial value for AutoModel.library schedule

If csrfile is set, restraints are not constructed, but are instead read from the user-supplied file of the same
name. See section 2.2.9 for an example.

If inifile is set, an initial model is read from the user-supplied file of the same name. See section 2.2.10 for
an example.

If root name is set, it is used to name any output files (see also AutoModel.get model filename()). By
default, files are named using sequence.

assess methods allows you to request assessment of the generated models (by default, none is done). You can
provide a function (or callable), or list of functions, for this purpose, including any of the SOAP potentials
(e.g., soap loop.Scorer(), soap protein od.Scorer()), or any of the standard functions provided in the
assess module:

• assess.GA341, which uses the GA341 method (see Model.assess ga341()).

• assess.DOPE, which uses the DOPE method (see Selection.assess dope()).

• assess.DOPEHR, which uses the DOPE-HR method (see Selection.assess dopehr()).

39

40 CHAPTER 4. COMPARATIVE MODELING CLASS REFERENCE

• assess.normalized dope, which uses the normalized DOPE method (see
Model.assess normalized dope()).

(This can also be set after the object is created, by assigning to ’AutoModel.assess methods’.) See Sec-
tion 2.2.3 for an example. Only the region selected by AutoModel.select atoms() is assessed, although
most assessment functions take the interaction with the rest of the system into account. Note that only stan-
dard models are assessed in this way; if you are also building loop models, see LoopModel.loop.assess methods.

By default, models are built using heavy atom-only parameters and topology. If you want to use
different parameters, read them in before creating the AutoModel object with Topology.read() and
Parameters.read().

See section 2.1 for a general example of using this class.

4.1.2 AutoModel.library schedule — select optimization schedule

This allows the degree of VTFM optimization to be adjusted. This is usually one of the schedules from
the autosched module (autosched.slow, autosched.normal, autosched.fast, autosched.very fast, or
autosched.fastest) or you can provide your own Schedule object (see Section 6.12). The default is
autosched.normal. See the modlib/modeller/automodel/autosched.py file for more information.

See Section 2.2.2 for an example.

4.1.3 AutoModel.md level — control the model refinement level

This allows the degree of MD refinement of the models to be adjusted. You can define your own function for
this purpose, set it to the special Python value None (in which case no additional refinement is done) or use
one of the predefined functions in the refine module — refine.very fast, refine.fast, refine.slow,
refine.very slow or refine.slow large — which perform different amounts of MD annealing. See the
modlib/modeller/automodel/refine.py file for more information.

See Section 2.2.2 for an example.

4.1.4 AutoModel.outputs — all output data for generated models

This is produced after AutoModel.make() is finished. It contains filenames and model scores for every
generated model. This information is provided for your own post-processing (e.g., ranking and further
refinement of the models) although a summary of it is printed at the end of the model run. See Section 2.2.14
for an example.

4.1.5 AutoModel.rand method — control initial model randomization

This is used to randomize the initial model before producing each final model. If set to None then no
randomization is done, and every model will be the same. You can set it to one of the functions in the
randomize module — randomize.xyz (the default) to randomize all coordinates of standard residues, or
randomize.dihedrals to randomize dihedral angles. (The amount of randomization carried out by these
two functions can be tuned by changing AutoModel.deviation.) Finally, you could provide your own Python
function; see the randomize module in modlib/modeller/automodel/randomize.py for examples to get
you started.

4.1.6 AutoModel.generate method — control initial model generation

This is used to build the initial model. It is usually set to generate.transfer xyz, which builds the model
based on the templates, but you can also set it to generate.generate xyz to build it purely from the
internal coordinates, or to generate.read xyz to read it from a file (see section 2.2.10 for the easiest way
to do this).

https://www.python.org/

4.1. AUTOMODEL REFERENCE 41

4.1.7 AutoModel.max var iterations — select length of optimizations

This is used to set max iterations for every call to ConjugateGradients(). Smaller numbers may lead to
more rapid (but less accurate) model building.

4.1.8 AutoModel.repeat optimization — number of times to repeat optimization

The entire optimization cycle is repeated this many times; increase the value from 1 (the default) to request
more thorough optimization.

4.1.9 AutoModel.max molpdf — objective function cutoff

VTFM optimization of each model is automatically aborted (continuing with the next model, if any) if the
objective function becomes larger than this value.

4.1.10 AutoModel.initial malign3d — initial template alignment

If set to True, then an initial structural alignment of all templates is done.

4.1.11 AutoModel.starting model — first model to build

This determines the number of the first model to build; models are built from AutoModel.starting model

through to AutoModel.ending model.

4.1.12 AutoModel.ending model — last model to build

This determines the number of the last model to build; see AutoModel.starting model.

4.1.13 AutoModel.final malign3d — final template-model alignment

If set to True, then all of the generated models (and loop models, if using LoopModel) are fit to the templates,
and written out with the fit.pdb extension.

4.1.14 AutoModel.write intermediates — write intermediate files during optimiza-
tion

If set to True, then PDB or mmCIF files are written out during the optimization (containing intermediate,
partially optimized coordinates) in addition to the final model file(s).

4.1.15 AutoModel.trace output — control optimization output

For every .B model file produced during modeling, a corresponding .D optimization trace file is produced,
using the actions.Trace() periodic action. (When loop modeling with LoopModel, a .DL file is produced
for each .BL loop model.) These files contain information about the progress of optimization, such as the
iteration step, atomic shifts in space, energies and gradients. By default, this is written out every 10 steps,
but you can change the frequency by assigning to this variable, or turn it off completely by setting it to zero.

See also AutoModel.get optimize actions() and AutoModel.get refine actions().

42 CHAPTER 4. COMPARATIVE MODELING CLASS REFERENCE

4.1.16 AutoModel.max ca ca distance — Distance cutoff for CA-CA homology-
derived restraints

This is the cutoff distance for Cα-Cαhomology-derived restraints (it is passed to
Restraints.make distance() as the maximal distance parameter when these restraints are gener-
ated). No Cα-Cαdistances greater than this value will be used in building homology-derived restraints; thus,
reducing this value from the default will typically reduce the number of restraints and increase the speed of
optimization.

The default value of this parameter is 14.0 angstroms.

See also AutoModel.max n o distance, AutoModel.max n o distance, AutoModel.max sc mc distance, and
AutoModel.max sc sc distance for similar cutoffs for the other kinds of homology-derived distance restraints.

See also AutoModel.very fast(), which decreases all of these distances from their default values.

4.1.17 AutoModel.max n o distance — Distance cutoff for N-O homology-derived
restraints

No homology-derived restraints will be generated using template N-O distances greater than this value. The
default value of this parameter is 11.0 angstroms.

See AutoModel.max ca ca distance for more details.

4.1.18 AutoModel.max sc mc distance — Distance cutoff for sidechain-mainchain
homology-derived restraints

No homology-derived restraints will be generated using template sidechain-mainchain distances greater than
this value. The default value of this parameter is 5.5 angstroms.

See AutoModel.max ca ca distance for more details.

4.1.19 AutoModel.max sc sc distance — Distance cutoff for sidechain-sidechain
homology-derived restraints

No homology-derived restraints will be generated using template sidechain-mainchain distances greater than
this value. The default value of this parameter is 5.0 angstroms.

See AutoModel.max ca ca distance for more details.

4.1.20 AutoModel.blank single chain — Control chain ID for single-chain models

If set False (the default), the chain in any generated single-chain model will be labeled ’A’. If set True, it
will be given an empty (blank) chain ID. This parameter has no effect when building multi-chain models.

4.1.21 AutoModel.set output model format() — set format for output models

set output model format(fmt)

This allows the format for output models to be set. Valid values are PDB or MMCIF. Normally output models
are written in PDB format; however, mmCIF files support larger structures and have better support for
metadata (such as information on the templates and alignment used in the modeling).

The templates for modeling can be mmCIF, BinaryCIF or PDB; they do not affect the output format.

Note that the initial model and any loop models are written in the same format (and if an initial model is
provided, it will be read in that format).

4.1. AUTOMODEL REFERENCE 43

4.1.22 AutoModel.get optimize actions() — get actions to carry out during the ini-
tial optimization

get optimize actions()

This returns a list of optimizer actions which are carried out during the initial optimization (and
for LoopModel, also during loop modeling). (By default, only the trace file is written (see
AutoModel.trace output.) You can override this method to perform other actions (see Section 6.11) dur-
ing the optimization — e.g. writing a CHARMM trajectory file using actions.CHARMMTrajectory().

4.1.23 AutoModel.get refine actions() — get actions to carry out during the refine-
ment

get refine actions()

This returns a set of optimizer actions which are carried out during the molecular dynamics refinement part
of the optimization. By default, it does the same thing as AutoModel.get optimize actions().

4.1.24 AutoModel.select atoms() — select region for optimization and assessment

select atoms()

By default, this selects all atoms in the system. Only the selected atoms are optimized in model building, so
you can redefine this routine to select the region of interest, if so desired. See section 2.2.6 for an example.

4.1.25 AutoModel.auto align() — generate an automatic initial alignment

auto align(matrix file=’family.mat’, overhang=0, write fit=False)

This generates an initial alignment between the templates and the target sequence. See section 2.2.15 for an
example.

4.1.26 AutoModel.very fast() — request rapid optimization

very fast()

This sets parameters to request very fast optimization of the model(s). It reduces the cutoff dis-
tances for homology-derived restraints (e.g. AutoModel.max ca ca distance), turns off model randomization
(AutoModel.rand method) and refinement (AutoModel.md level), selects a very fast optimization schedule
(AutoModel.library schedule) and reduces the number of optimization steps (max var iterations). See sec-
tion 2.2.3 for an example.

4.1.27 AutoModel.make() — build all models

make(exit stage=0)

You should call this command after creating an AutoModel object and setting any desired parameters, to
then go ahead and build all models.

44 CHAPTER 4. COMPARATIVE MODELING CLASS REFERENCE

If exit stage is 2, then this routine exits after generating the initial model; no optimized models are built. If
it is 1, then it also creates the restraints file before exiting. If it is 0 (the default) then the full comparative
modeling procedure is followed.

4.1.28 AutoModel.cluster() — cluster all built models

cluster(cluster cut=1.5)

This can be called after model building is complete. It clusters all of the output models, and outputs an
averaged cluster structure, both optimized (in the file cluster.opt) and unoptimized (in cluster.ini).
cluster cut gives the cluster cutoff distance, as used in Model.transfer xyz().

4.1.29 AutoModel.special restraints() — add additional restraints

special restraints(aln)

This method is called automatically by AutoModel after the default restraints are generated. By default, it
does nothing. However, you can redefine it to add additional user-defined restraints to those calculated by
AutoModel. Symmetry restraints, excluded atom pairs, and rigid body definitions can also be set up in this
routine. The routine is passed aln, which is the alignment between the templates and the target sequence.
See section 2.2.11 for an example.

4.1.30 AutoModel.nonstd restraints() — add restraints on ligands

nonstd restraints(aln)

This method is called automatically by AutoModel after it generates the standard protein restraints. It adds
restraints to keep non-standard residues (anything treated as a HETATM or BLK residue, such as ligands
or metal ions) in a reasonable conformation. You can override this method if you need to change these
restraints.

By default, four sets of restraints are built:

• For each residue that has no defined topology (generally BLK residues, used to transfer ligands di-
rectly from templates, as described in Section 2.2.1), intra-residue distances are all constrained to their
template values. This causes each residue to behave as a rigid body.

• Inter-residue distances are constrained to template values if these are 7Å or less. This has the effect of
preserving multiple-HETATM structures such as DNA chains. If the distances are 2.3Å or less they are
assumed to be bonds and so are restrained more strongly and also excluded from the nonbonded list.

• Residue-protein atom distances are strongly constrained to template values (and excluded from the
nonbonded list) if these are 2.3Å or less. This preserves chemical bonds between ligands and the
protein.

• Residue-protein Cα distances are constrained to template values if these are 10Å or less and are not
already bonded by the previous restraints. This preserves the ligand position.

4.1.31 AutoModel.special patches() — add additional patches to the topology

special patches(aln)

This routine, which is usually empty, can be redefined by the user to make additional changes to the model
topology, such as:

4.1. AUTOMODEL REFERENCE 45

• adding patches by calling Model.patch(), such as user-defined disulfides (see Section 2.2.7 for an
example)

• renumbering the residues or renaming the chains (see Section 2.2.13 for an example)

• changing Charmm atom types, by assigning to Atom.type or by calling
AutoModel.guess atom types()

4.1.32 AutoModel.user after single model() — analyze or refine each model

user after single model()

This routine is called after building each model, before the output PDB or mmCIF file is written. It usually
does nothing, but can be redefined by the user to perform analysis or additional refinement on each model.
See Section 2.2.12 for an example. For loop models, see LoopModel.user after single loop model().

4.1.33 AutoModel.get model filename() — get the model PDB/mmCIF name

get model filename(root name, id1, id2, file ext)

This routine returns the PDB or mmCIF file name of each generated model, usually of the form
’foo.B000X000Y.pdb’ (where root name (or sequence)=foo, id1=X, id2=Y, and file ext=.pdb). You can
redefine this routine if you don’t like the standard naming scheme. For typical AutoModel usage, id1 is a
constant and id2 is the model number, running from AutoModel.starting model to AutoModel.ending model.

See also LoopModel.get loop model filename() and AutoModel.set output model format().

4.1.34 AutoModel.use parallel job() — parallelize model building

use parallel job(job)

This uses a parallel job object (see Section 6.35) to speed up model building. When building multiple models,
the optimization process is spread over all nodes in the parallel job (for example, if building 10 models, and
you are running on 2 nodes, each node will build 5 models). This feature is still experimental.

4.1.35 AutoModel.guess atom types() — automatically assign Charmm atom types

guess atom types()

When using BLK residues to represent ligands or other non-standard residues as rigid bodies (see Sec-
tion 5.2.1) all atoms in these residues are assigned the Charmm ‘undf’ type, which behaves similarly to
carbon or nitrogen. This can lead to inaccurate soft-sphere or Lennard-Jonesinteractions for hydrogens or
metal ions. This function will attempt to assign suitable Charmm atom types to all residues without defined
topology (usually BLK residues) in the model. To use it, call it from AutoModel.special patches(). Any
atom type assignments are shown in the log file, which should be carefully inspected for mistakes. It calls
AutoModel.guess atom type() for each atom, so its guesses can be improved by overriding that function.

4.1.36 AutoModel.guess atom type() — automatically assign Charmm atom type

guess atom type(atom)

46 CHAPTER 4. COMPARATIVE MODELING CLASS REFERENCE

This assigns the Charmm atom type (see Section 6.24) for the given Atom object (see Section 6.23). By
default, this is done by guessing the type based on the atom name, but the method can be overridden to
improve the guesses. It is usually called from AutoModel.guess atom types().

4.2 AllHModel reference

The AllHModel class is derived from AutoModel, so all properties and commands of both the AutoModel and Model

classes are available in addition to those listed below.

4.2.1 AllHModel() — prepare to build all-hydrogen models

AllHModel(env, alnfile, knowns, sequence, deviation=None, library schedule=None, csrfile=None,

inifile=None, assess methods=None)

This creates a new object for building all-hydrogen models. All of the arguments are the same as those for
AutoModel().

See section 2.2.5 for an example.

4.3 LoopModel reference

The LoopModel class is derived from AutoModel, so all properties and commands of both the AutoModel and Model

classes are available in addition to those listed below.

4.3.1 LoopModel() — prepare to build models with loop refinement

LoopModel(env, sequence, alnfile=None, knowns=[], inimodel=None, deviation=None,

library schedule=None, csrfile=None, inifile=None, assess methods=None,

loop assess methods=None, root name=None)

This creates a new object for loop modeling. It can either build standard comparative models (in identical
fashion to the AutoModel class) and then refine each of them, in which case you should set the alnfile and
knowns arguments appropriately (see the AutoModel() documentation) or it can refine a given region of a
PDB or mmCIF file, in which case you should set inimodel to the name of the PDB or mmCIF file instead.
In both cases, sequence identifies the code of the target sequence.

All other arguments are the same as those for AutoModel(), with the exception of those below:

loop assess methods is the analog of AutoModel.assess methods for loop modeling, and allows you to request
assessment of the generated loop models. (This can also be set after the object is created, by assigning to
’LoopModel.loop.assess methods’.) Only the region selected by LoopModel.select loop atoms() is
assessed, although most assessment functions take the interaction with the rest of the system into account.

See section 2.3 for examples.

4.3.2 LoopModel.loop.md level — control the loop model refinement level

This is the analog of AutoModel.md level for loop modeling, and allows the loop model refinement to be
customized.

4.3.3 LoopModel.loop.max var iterations — select length of optimizations

This is the analog of AutoModel.max var iterations for loop modeling.

4.3. LOOPMODEL REFERENCE 47

4.3.4 LoopModel.loop.library schedule — select optimization schedule

This is the analog of AutoModel.library schedule for loop modeling.

4.3.5 LoopModel.loop.starting model — first loop model to build

This is the analog of AutoModel.starting model and determines the number of the first loop model to build
for each regular model.

4.3.6 LoopModel.loop.ending model — last loop model to build

This is the analog of AutoModel.ending model and determines the number of the last loop model to build for
each regular model.

4.3.7 LoopModel.loop.write selection only — write PDB/mmCIFs containing only
the loops

If set to True, then the generated PDB or mmCIF files contain only the loops themselves, not the rest of
the protein. The default value is False, which generates complete protein PDBs.

Note that if set to True, AutoModel.final malign3d cannot also be set to True, since the final structural
alignment requires the full structure of each loop model.

4.3.8 LoopModel.loop.write defined only — only write non-loop atoms present in
the input model

When constructing the initial model for loop refinement, Modeller fills in any missing atoms in both the
loop and non-loop regions. These are needed in order to accurately determine the interaction between the
loop and the rest of the protein. The coordinates for the missing atoms are constructed automatically using
internal coordinates, so clashes between the atoms and the rest of the protein may exist (note, however, that
the score of the loop does not include protein-protein internal interactions, so will not be affected).

If set to False, the default, the written-out models will contain the atoms present in the original non-loop
region plus those added automatically. If set to True, the models will contain only the non-loop atoms that
were present in the input model.

Note that if LoopModel.loop.write selection only is set to True, only the loop region is written out, so this
option has no effect.

4.3.9 LoopModel.loop.outputs — all output data for generated loop models

This is the analog of AutoModel.outputs for loop modeling; it contains filenames and model scores for every
generated loop model.

4.3.10 LoopModel.select loop atoms() — select region for loop optimization and
assessment

select loop atoms()

By default, this selects all atoms near gaps in the alignment for loop optimization (by calling
Model.loops()). You should redefine this routine if you do not have an alignment, or you wish to set
a different region for loop optimization. See section 2.3 for an example.

48 CHAPTER 4. COMPARATIVE MODELING CLASS REFERENCE

4.3.11 LoopModel.get loop model filename() — get the model PDB/mmCIF name

get loop model filename(root name, id1, id2, file ext)

This routine returns the PDB or mmCIF file name of each generated loop model, usually of the form
’foo.BL000X000Y.pdb’ (where root name (or sequence)=foo, id1=X, id2=Y, and file ext=.pdb). You can
redefine this routine if you don’t like the standard naming scheme. For typical LoopModel usage, id1 is the
loop model number, running from LoopModel.loop.starting model to LoopModel.loop.ending model, and id2 is
the comparative model number, running from AutoModel.starting model to AutoModel.ending model.

See also AutoModel.get model filename().

4.3.12 LoopModel.user after single loop model() — analyze or refine each loop
model

user after single loop model()

This is the analog of AutoModel.user after single model(), and is called after building each loop model,
before the output PDB/mmCIF file is written. It can be redefined by the user to perform analysis or
additional refinement on each loop model.

4.3.13 LoopModel.read potential() — read in the loop modeling potential

read potential()

This reads in the <GroupRestraints> object which defines the statistical potential for loop modeling. Re-
define this routine if you want to use a different potential.

4.3.14 LoopModel.build ini loop() — create the initial conformation of the loop

build ini loop(atmsel)

This creates the initial conformation of the loop. By default all atoms are placed on a line between the loop
termini, but you may want to use a different conformation, in which case you should redefine this routine.
For example, if you want to leave the initial PDB/mmCIF file untouched, use a one-line ’pass’ routine.

4.4 DOPELoopModel reference

The DOPELoopModel class is derived from LoopModel, and is very similar in operation, except that a newer DOPE-
based loop modeling protocol is used (see Selection.assess dope()). The main differences are:

• DOPE (see Selection.assess dope()) potential used in combination with GB/SA implicit solvent interaction
(see Section 6.14).

• Lennard-Jones potential used rather than soft-sphere.

• Improved handling of ligand-loop interactions.

To use, simply use ’DOPELoopModel’ rather than ’LoopModel’ in your Python scripts (see Section 2.3 for ex-
amples). Note that it will be significantly slower than the regular loop modeling procedure, primarily due to the
GB/SA interaction.

https://www.python.org/

4.5. DOPEHRLOOPMODEL REFERENCE 49

4.4.1 DOPELoopModel() — prepare to build models with DOPE loop refinement

DOPELoopModel(env, sequence, alnfile=None, knowns=None, inimodel=None, deviation=None,

library schedule=None, csrfile=None, inifile=None, assess methods=None,

loop assess methods=None, root name=None)

See LoopModel() for all arguments.

4.5 DOPEHRLoopModel reference

This class is identical to DOPELoopModel, except that the higher precision DOPE-HR method (see
Selection.assess dopehr()) is used.

50 CHAPTER 4. COMPARATIVE MODELING CLASS REFERENCE

Chapter 5

Modeller general reference

Sections in this Chapter describe technical aspects of Modeller.

5.1 Miscellaneous rules and features of Modeller

This Section describes several features of the program, including file naming conventions, various file types, and
the control of the amount of output.

5.1.1 Modeller system

One of the main aims of Modeller is to allow for flexible exploration of various modeling protocols to facilitate
the development of better modeling methods. Modeller can be seen as an interpreted language that is specialized
for modeling of protein 3D structure.

See section 1.6.2 for basic information on writing and running scripts.

5.1.2 Controlling breakpoints and the amount of output

Some errors are recoverable. For those errors, a Python exception exception is raised. It is then up to your script
to deal sensibly with the failure of the preceding command using a standard ’except’ clause. For example, this
flexibility allows derivation of multiple models and searching for many sequences, even if some cases abort due
to convergence problems. This exception could be a generic ModellerError exception, a more specific subclass
(FileFormatError), or a standard Python exception1.

There are five kinds of messages that Modeller writes to the log file: long output from the Modeller

commands, short notes to do with the execution of the program (files opened, etc.), warnings identified by ‘ W>’,
errors identified by ‘ E>’, and the messages about the status of dynamic memory allocation. To control how much
of this output is displayed, use the log object; for more information, see Section 6.31.

5.1.3 File naming

There are several filename generating mechanisms that facilitate file handling. Not all of them apply to all file
types.

Environment variables

There can be Unix shell environment variables in any input or output filename. The environment variables have
to be in the format ${VARNAME} or $(VARNAME). Also, two predefined macros are available for string variables:

1Modeller can raise the following Python exceptions: ZeroDivisionError, IOError, MemoryError, EOFError, TypeError,
NotImplementedError, UnicodeError, IndexError, and ValueError.

51

https://www.python.org/
https://www.python.org/

52 CHAPTER 5. MODELLER GENERAL REFERENCE

• ${LIB} is expanded into the $LIB MODELLER variable defined in modlib/libs.lib (equal to
$MODINSTALL10v8/modlib);

• ${JOB} is expanded into the root of the script filename, or ’(stdin)’ if instructions are being read from
standard input;

If the MODELLER DEPRECATION environment variable is set to ERROR, use of any deprecated class name2 in the
input script will cause a fatal error (normally this will only trigger a warning).

Reading or writing files

Any input file for Modeller (alignments, PDB files, etc) can be compressed. If the name of an input file ends
with a ’.Z’, ’.gz’, ’.bz2’, or ’.7z’ extension, or the specified input file cannot be found but a compressed
version (with extension) does, then Modeller automatically uncompresses the file before reading it. (Note that
it uses the gzip, bzip2 and 7za programs to do this, so they must be installed on your system in order for this
to work. Also, any ’.7z’ archives must contain only a single member, which is the file to be uncompressed, just
as with ’.gz’ or ’.bz2’ files.) The uncompressed copy of the file is created in the system temporary directory
(deduced by checking the ’MODELLER TMPDIR’, ’TMPDIR’, ’TMP’ and ’TEMP’ environment variables in that order,
falling back to /tmp on Unix and C:\ on Windows), or the current working directory if the temporary directory is
read-only.

Any files written out by Modeller can also be compressed. If the output file name ends in ’.gz’ or ’.bz2’
extension, a temporary uncompressed copy is created in the same way as above, and when the file is closed, the
file is compressed with gzip or bzip2 and placed in the final location. (Writing out files in ’.Z’ or ’.7z’ format
is not currently supported.)

ManyModeller functions that take file names can also be given file handles; these can either bemodfile.File()
objects or Python filelike objects such as sys.stdout.

Coordinate files and derivative data

When accessing an atom file, if Modeller cannot find the specified filename or a compressed version of it (see
above) it tries adding the extensions ’.atm’, ’.pdb’, ’.ent’, ’.cif’, ’.bcif’, and ’.crd’ in this order, then
also with the ’pdb’ prefix. If the filename is not an absolute path (i.e., it does not start with ’/’) then this
search is then repeated through all the directories in IOData.atom files directory. PDB-style subdirectories (the last
two but one characters in the PDB code) are also searched for each directory e.g., 1abc is searched for in the ’ab’
subdirectory, pdb4xyz.ent in the ’xy’ subdirectory, and the new-style 12-character extended PDB ID PDB 12345678
in the ’67’ subdirectory. Atom files can be read in PDB, mmCIF, or BinaryCIF format.

Any derivative data that Modeller may need, including residue solvent accessibilities, hydrogen bonding
information, dihedral angles, residue neighbors, etc., are calculated on demand from the atomic coordinates. The
most time consuming operation is calculating solvent accessibility, but even this calculation takes less than 1 sec
for a 200 residue protein on a Pentium III workstation.

Modeller stores the filenames of coordinate sets in the alignment arrays. These arrays are used
by Alignment.compare structures(), Restraints.make(), Alignment.malign3d(), Alignment.align2d(),
and several other commands. If these filenames do not change when the structures are needed for the second time,
the coordinate files are not re-read because they should already be in memory. This creates a problem only when
the contents of a structure file changes since it was last read during the current job.

Unicode

Modeller supports Unicode for file naming, so files named using non-English characters can be accessed. If you
wish to access such a file, specify the file name in your data file (e.g. alignment file) or Python 2 script in UTF-8
encoding. Modeller will raise a UnicodeError if your filenames are not valid UTF-8. (If using Python 3, you

2All Modeller Python classes are named using CamelCase, such as Model, Alignment, or AutoModel. Previous versions of Modeller

used lowercase names, such as model, alignment, or automodel. These lowercase names are still available but are deprecated.

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/

5.1. MISCELLANEOUS RULES AND FEATURES OF MODELLER 53

need do nothing special, since it already understands Unicode.) Since UTF-8 is a superset of ASCII, if you are
using only English characters you need do nothing special. 3

Modeller input files are assumed to be UTF-8 encoded. However, most of the data Modeller handles is
not Unicode-enabled (for example, PDB files and one letter residue types have to be ASCII, not Unicode), so you
should not use non-English characters, except in filenames.

5.1.4 File types

Modeller uses a number of standard filename extensions to indicate the type of data stored in a file (Table 5.1).
The extensions are generally not mandatory, only very helpful.

Extension Description
.top TOP script with instructions for a Modeller job
.log log output produced by a Modeller run
.ali alignment or sequences in the PIR format
.pap alignment or sequences in the PAP format
.aln alignment or sequences in the Quanta format
.aln alignment or sequences in the InsightII format
.seq, .chn sequence(s) in the PIR alignment format
.cod list of sequence codes
.grp list of families in PDB
.atm, .pdb, .ent atom coordinates in the PDB or Grasp format
.crd atom coordinates in the Charmm format
fit.pdb fitted protein structures in the PDB format
.ini initial Modeller model
.B* Modeller model in the PDB format
.D* the progress of optimization
.BL* Modeller model in the PDB format, in loop modeling
.DL* the progress of optimization, in loop modeling
.IL* initial Modeller model, in loop modeling
.V* violations profile
.E* energy profile
.rsr restraints in MODELLER format
.lrsr restraints in MODELLER format, in loop modeling
.sch schedule file for the variable target function optimization
.mat matrix of pairwise protein distances from an alignment
.mat matrix of pairwise residue type–residue type distance scores
.sim.mat matrix of pairwise residue type–residue type similarity scores
.lib various Modeller libraries
.psa residue solvent accessibilities
.sol atomic solvent accessibilities
.ngh residue neighbors
.dih mainchain and sidechain dihedral angles
.ssm secondary structure assignment
.var sequence variability profile from multiple alignment
.asgl data for plotting by Asgl

Table 5.1: List of file types.

3On Unix/Linux systems, Modeller assumes that your filesystem also stores filenames in UTF-8. This is usually the case on
modern systems; however, you can change the encoding by setting the G FILENAME ENCODING environment variable.

https://salilab.org/asgl/

54 CHAPTER 5. MODELLER GENERAL REFERENCE

5.2 Stereochemical parameters and molecular topology

All molecular modeling programs generally need to know what are the atoms in all residue types, what are the
atom pairs that are covalently bonded to each other (i.e., molecular topology), and what are the ideal bond lengths,
angles, dihedral angles, and improper dihedral angles (i.e., internal coordinates and stereochemical restraints). This
information is stored in the residue topology and parameter libraries, which are manipulated by Modeller scripts
using the Libraries class (see Section 6.5.

For commands dealing with generating, patching, and mutating molecular topology, see the Model class refer-
ence, in section 6.6.

5.2.1 Modeling residues with non-existing or incomplete entries in the topology and
parameter libraries

Defining new residue types is generally one of the more painful areas in developing and using a molecular modeling
program. Modeller has two quick-and-dirty solutions described in the next two sections that are often sufficient
for comparative modeling involving new residue types. On the other hand, if you are willing to spend some time
and define a new entry or complete an incomplete entry in the residue topology or parameter libraries, see the FAQ
Section 3.1, Question 8.

Residues with defined topology, but with missing parameters

The parameter library is used by the Restraints.make() command to construct bond, angle, dihedral angle,
improper dihedral angle, and non-bonded Lennard-Jones restraints. If some parameters for these restraints are
missing, they are guessed on the fly from the current Cartesian coordinates of the MODEL. Thus, when there
are missing parameters, the MODEL coordinates must be defined before calling Restraints.make(). The coor-
dinates can be defined by the Model.build() command (from the IC entries in the residue topology library), by
the Model.read() command (from an existing coordinate file for MODEL), or by the Model.transfer xyz()
command (from template coordinate files aligned with MODEL). The bonds, angles, and improper dihedral angles
are restrained by a harmonic potential with the mean equal to the value in the current structure and a force
constant typical for chemical bonds, angles, and improper dihedral angles, respectively. The dihedral angles are
restrained by a tri-modal cosine term with the mean equal to the angle in the current structure. A message detailing
Modeller’s improvisation is written to the log file.

Block (BLK) residues with undefined topology and parameters

The second relatively easy way of dealing with missing entries in the residue topology and/or parameters libraries
is to use a “block” residue. These residues are restrained more or less as rigid bodies to the conformation of the
equivalent residue(s) in the template(s). No chemical information is used. The template residues can themselves
be defined as block residues. The symbol for the block residues is ‘BLK’ in the four- and three-letter codes and
‘.’ in the single-letter code. The atoms in a BLK residue include all uniquely named atoms from the equivalent
residues in all the templates. The atom type of all BLK atoms is the Charmm type ‘undf’ (but note that this
can be changed by assigning to Atom.type). The IUPAC atom names (as opposed to the atom types) are the same
as in the templates.

BLK atoms are treated differently from the other atoms during preparation of dynamic restraints: No pairs of
intra-BLK atoms are put on the dynamic non-bonded list. Only the “inter-BLK” atom pairs and “BLK–other”
atom pairs are considered for the dynamic non-bonded restraints. The radius of all block atoms (for soft-sphere
restraints) is that of the Charmm ‘undf’ atom type. All intra-BLK and inter-residue BLK restraints other than the
non-bonded restraints have to be derived separately and explicitly by the Restraints.make distance() command.
See AutoModel.nonstd restraints() for the routine that makes block restraints for comparative modeling with
the AutoModel class. Lennard-Jones terms use the Charmm parameters for ‘undf’ atoms (par.lib assumes these
are similar to those for typical heavy atoms). Coulomb terms involving ‘undf’ atoms are ignored by Modeller.
Non-bonded spline restraints (see EnergyData.dynamic modeller and GroupRestraints()) derive their atom classes
simply from the atom and residue names, so will function with BLK atoms only if the names of the BLK atoms

5.3. SPATIAL RESTRAINTS 55

and residues are given in the spline restraints atom class file. GB/SA restraints (see gbsa.Scorer()) will treat all
BLK atoms as uncharged and with the same radius (that given in solv.lib for the ‘undf’ atom type).

See also AutoModel.guess atom types(), to obtain improved interaction parameters for BLK residues.

Please note that if you use ‘BLK’ residues, you should set IOData.hetatm to True, as most ‘BLK’ residues are
PDB HETATM residues (note, however, that ‘BLK’ residues can be either HETATM or ATOM; for example, any
DNA or RNA residues handled as ‘BLK’ will be ATOM residues).

For an example of how to use block residues, see Section 2.2.1.

5.3 Spatial restraints

The objective function used by Modeller is a sum over all of the restraints. See Section A.3 for equations defining
the restraints and their derivatives with respect to atomic positions. See Section 6.6 for commands for calculating
the objective function and Section A.2 for optimization methods. See the original papers for the most detailed
definition and description of the restraints [Šali & Blundell, 1993, Šali & Overington, 1994].

5.3.1 Specification of restraints

Static and dynamic restraints

Dynamic restraints are created on the fly, and currently include:

• Soft-sphere overlap restraints (see EnergyData.dynamic sphere).

• Lennard-Jones restraints (see EnergyData.dynamic lennard).

• Coulomb restraints (see EnergyData.dynamic coulomb).

• Non-bond spline restraints (see EnergyData.dynamic modeller).

• GBSA solvent restraints (see Section 6.14).

• EM density restraints (see EnergyData.density).

• SAXS restraints (see EnergyData.saxsdata).

• User-defined energy terms (see Section 7.1.3).

Dynamic restraints are not written into the restraints file by Restraints.write() (only static restraints are).

Static restraints can be added with the Restraints.add() command, or can be read from a restraints file
(see Section B.2). Collections of static restraints useful for various purposes (e.g. for restraining all bond lengths
or angles, or for using template information) can also be automatically generated with the Restraints.make()
command.

Each static restraint is formulated as a mathematical form (e.g. a Gaussian function) which acts on one or
more ‘features’ of the model (e.g. a bond length). Any feature can be used with any mathematical form, with the
exception of forms.MultiBinormal, which generally only works properly with features.Dihedral. Both feature
types and mathematical forms are described below.

Feature types

Each feature is a Python class, which takes a defined number of atom ids as input. Each of these atom ids can be:

• An Atom object, from the current model (e.g., m.atoms[’CA:1’]; see Model.atoms).

• A Residue object, from the current model (e.g., m.residues[’3’]; see Sequence.residues), in which case all
atoms from the residue are used.

https://www.python.org/

56 CHAPTER 5. MODELLER GENERAL REFERENCE

• A list of atoms or residues returned by Model.atom range() or Model.residue range(), in which case
all atoms from the list are used.

• A Model object, in which case all atoms in the model are used.

• A Selection object, in which case all atoms in the selection are used.

Features can be any of the classes in the features module (see below) or you can create your own classes; see
Section 7.1.

features.Distance(*atom ids)

Distance in angstroms between the given two atoms.

features.Angle(*atom ids)

Angle in radians between the given three atoms.

features.Dihedral(*atom ids)

Dihedral angle in radians between the given four atoms.

features.MinimalDistance(*atom ids)

Given an even number of atoms, this calculates the distance between the first two atoms, the third and fourth, and
so on, and returns the shortest such pair distance, in angstroms.

features.SolventAccess(*atom ids)

Area (in Å2) exposed to solvent of the given atom. Note that this feature cannot be used in optimization, as
first derivatives are always returned as zero. Note also that Model.write data() should first be called with
OUTPUT=’PSA’ to calculate the accessibility values.

features.Density(*atom ids)

Atomic density (number of atoms within contact shell of the given atom). Note that this feature cannot be used in
optimization, as first derivatives are always returned as zero.

features.XCoordinate(*atom ids)

Value of the x coordinate (in angstroms) of the given atom.

features.YCoordinate(*atom ids)

Value of the y coordinate (in angstroms) of the given atom.

features.ZCoordinate(*atom ids)

Value of the z coordinate (in angstroms) of the given atom.

features.DihedralDiff(*atom ids)

Difference in radians between two dihedral angles (defined by the first four and last four atoms).

Mathematical forms of restraints

Each mathematical form is a Python class, which takes one or features (above) as arguments to act on. group

is used to group restraints into “physical feature types” for reporting purposes in Selection.energy(), etc, and
should be a Python object from the physical module (see Table 6.1 and Section 6.10.1). You can also create your
own mathematical forms by creating new Python classes; see Section 7.1.

Each of the mathematical forms is depicted in Figure 5.1.

forms.LowerBound(group, feature, mean, stdev)

Harmonic lower bound (left Gaussian). The given feature is harmonically restrained to be greater than mean with
standard deviation stdev. See Eq. A.82.

forms.UpperBound(group, feature, mean, stdev)

Harmonic upper bound (right Gaussian). The given feature is harmonically restrained to be less than mean with
standard deviation stdev. See Eq. A.83.

forms.Gaussian(group, feature, mean, stdev)

Single Gaussian (harmonic potential). The given feature is harmonically restrained to be around mean with standard
deviation stdev. See Eq. A.63.

forms.MultiGaussian(group, feature, weights, means, stdevs)

Multiple Gaussian. The given feature is restrained by a linear combination of Gaussians. weights, means and stdevs

https://www.python.org/
https://www.python.org/

5.3. SPATIAL RESTRAINTS 57

should all be lists (of the same size) specifying the weights of each Gaussian in the linear combination, their means,
and their standard deviations, respectively. See Eq. A.66.

forms.Factor(group, feature, factor)

Simple scaling. The given feature value is simply multiplied by factor to yield the objective function contribution.

forms.LennardJones(group, feature, A, B)

Lennard-Jones potential. The given feature is restrained by means of a Lennard-Jones potential, with control
parameters A and B. See Eq. A.90.

forms.Coulomb(group, feature, q1, q2)

Coulomb point-to-point potential. The given feature is restrained by means of an inverse square Coulomb potential
created by charges q1 and q2. See Eq. A.87.

forms.Cosine(group, feature, phase, force, period)

Cosine potential. The given feature is restrained by a Charmm-style cosine function, with the given phase shift,
force constant and periodicity. See Eq. A.84.

forms.MultiBinormal(group, features, weights, means, stdevs, correls)

The given two features (generally both features.Dihedral) are simultaneously restrained by a multiple binormal
restraint. weights, means, stdevs and correls should all be lists (of the same size). weights specifies the weights of
each term in the function. means and stdevs give the mean and standard deviation of each feature for each term,
and each element should thus be a 2-element list. correls gives the correlation between the two features for each
term. See Eq. A.76.

forms.Spline(group, feature, open, low, high, delta, lowderiv, highderiv, values)

Cubic spline potential. The given feature is restrained by an interpolating cubic spline, fitted to values, which
should be a list of objective function values. The first element in this list corresponds to feature value low, the last
to feature value high, and points in the list are taken to be equally spaced by delta in feature space. The spline can
either be open (open = True) in which case the first derivatives of the function at the first and last point in values

are given by lowderiv and highderiv respectively, or closed (open = False) in which case lowderiv and highderiv are
ignored. A closed spline ’wraps around’ in such a way that feature values low and high are taken to refer to the
same point, and is useful for periodic features such as angles. See Eq. A.97.

forms.NDSpline(group, values)

Multi-dimensional cubic spline potential. The given feature is restrained by an interpolating multi-dimensional
cubic spline, fitted to values, which should be an N-dimensional list of objective function values. (For example,
for a 2D spline, it should be a list of lists. The outer list goes over the second feature, and contains one or more
rows, each of which is a list which goes over the first feature.) After creating the object, you should then call the
’add dimension’ function N times:

NDSpline.add dimension(feature, open, low, high, delta, lowderiv, highderiv)

This initializes the next dimension of the multi-dimensional cubic spline. Parameters are as for ’forms.Spline()’,
above. Note that lowderiv and highderiv are used for every spline, for efficiency. (For example, in an x-by-y 2D
spline, there will be ’x’ splines in the second dimension, each of which could have its own lowderiv and highderiv,
but one pair of values is actually used for all ’x’ of these splines.)

Restraint violations

When Modeller optimizes the objective function, the aim is to fulfill all of the restraints as well as possible. In
complex cases, this will be difficult or impossible to do, and some of the restraints will not be optimal. In this
case, Modeller reports the deviation of each restraint from the optimum as a ‘violation’. There are four kinds of
restraint violation used by Modeller:

• The heavy violation is defined as the difference between the current value of the feature, and the global
minimum of the same feature according to the restraint’s mathematical form.

• The relative heavy violation is the heavy violation normalized by dividing by the standard deviation of the
global minimum.

• The minimal violation is defined as the difference between the current value of the feature, and the nearest
minimum of the same feature according to the mathematical form. Where this minimum corresponds to the

58 CHAPTER 5. MODELLER GENERAL REFERENCE

global minimum (or for forms which have no well-defined local minimum, such as cubic splines), the minimal
violation is the same as the heavy violation.

• The relative minimal violation is the minimal violation normalized by dividing by the standard deviation of
the local minimum.

Equations for relative heavy violations for most mathematical forms are given in Section A.3.2.

5.3.2 Specification of pseudo atoms

There are virtual and pseudo atoms. A virtual atom is an atom that occurs in the actual molecule, but whose
position is not represented explicitly in the MODEL and topology file. A pseudo atom is a position that does not
correspond to an actual atom in a molecule, but is some sort of an average of positions of real atoms. Pseudo atoms
can be added to the list of restraints by adding the objects below to the Restraints.pseudo atoms list. Atom ids are
as for features, above. The Modeller pseudo and virtual atom types follow closely the Gromos definitions.

pseudo atom.GravityCenter(*atom ids)

Gravity center of all of the supplied atoms.

pseudo atom.CH2(*atom ids)

Pseudo aliphatic proton on a tetrahedral carbon (>CH2). Not assigned stereospecifically; its position is between
the two real protons; defined by the central C and the other two substituents (specified by atom ids).

pseudo atom.CH31(*atom ids)

Pseudo aliphatic proton on a tetrahedral carbon (-CH3), defined by the central C and the heavy atom X in X-CH3
(specified by atom ids); its position is the average of the three real protons.

pseudo atom.CH32(*atom ids)

Pseudo aliphatic proton between two unassigned -CH3 groups; defined by X in CH3 - X - CH3 and the two C
atoms from the two CH3 groups (specified by atom ids). Its position is the average of the six real protons.

virtual atom.CH1(*atom ids)

Virtual aliphatic proton on a tetrahedral carbon (->CH), defined by the central C and the three other substituents
(specified by atom ids).

virtual atom.CH1A(*atom ids)

Virtual aromatic proton on a trigonal carbon (=CH), defined by the central C and the two C atoms bonded to the
central C (specified by atom ids).

virtual atom.CH2(*atom ids)

Virtual aliphatic proton on a tetrahedral carbon (>CH2) assigned stereospecifically; defined by the central tetra-
hedral atom and the other two substituents on it (specified by atom ids).

Example: examples/python/pseudo atoms.py

from modeller import *

from modeller.scripts import complete_pdb

from modeller.optimizers import ConjugateGradients

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

log.verbose()

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

Read in the model

mdl = complete_pdb(env, "1fdn")

rsr = mdl.restraints

Select all C-alpha atoms

allat = Selection(mdl)

https://salilab.org/modeller/examples/python/pseudo_atoms.py

5.3. SPATIAL RESTRAINTS 59

allca = allat.only_atom_types(’CA’)

Create a pseudo atom that is the center of all C-alphas, and activate it

center = pseudo_atom.GravityCenter(allca)

rsr.pseudo_atoms.append(center)

Constrain every C-alpha to be no more than 10 angstroms from the center

for at in allca:

r = forms.UpperBound(group=physical.xy_distance,

feature=features.Distance(at, center),

mean=10.0, stdev=0.1)

rsr.add(r)

Constrain the gravity center to the x=0 plane

r = forms.Gaussian(group=physical.xy_distance,

feature=features.XCoordinate(center),

mean=0.0, stdev=0.1)

rsr.add(r)

Keep sensible stereochemistry

rsr.make(allat, restraint_type=’stereo’, spline_on_site=False)

Optimize with CG

cg = ConjugateGradients()

cg.optimize(allat, max_iterations=100, output=’REPORT’)

mdl.write(file=’1fas.ini’)

5.3.3 Excluded pairs

You can also exclude certain pairs of atoms from the nonbonded list. These Python objects are added to the
Restraints.excluded pairs list.

ExcludedPair(atom id1, atom id2)

Excludes the given two atoms from the nonbonded list.

Example: examples/scoring/excluded pair.py

Demonstrate the use of excluded pairs.

In this example we approximate a disulfide linkage by creating a distance

restraint between two SG atoms in CYS residues. Since these atoms are in

different residues, ordinarily Modeller will calculate a van der Waals

(soft sphere) interaction between them. We use an excluded pair to prevent

this interaction from being calculated, as otherwise it will conflict

with the new distance restraint.

Note that this is an example only; ordinarily a DISU patch would be used

to create a disulfide linkage. The DISU patch has the advantage that it

restrains the angles and dihedrals involved with the SG-SG bond, and also

excludes these atom pairs from van der Waals interaction.

from modeller import *

from modeller.scripts import complete_pdb

from modeller.optimizers import ConjugateGradients

https://www.python.org/
https://salilab.org/modeller/examples/scoring/excluded_pair.py

60 CHAPTER 5. MODELLER GENERAL REFERENCE

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

env.edat.dynamic_sphere = True

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

code = ’1fas’

mdl = complete_pdb(env, code)

atom1 = mdl.atoms[’SG:3:A’]

atom2 = mdl.atoms[’SG:22:A’]

mdl.restraints.add(forms.Gaussian(group=physical.xy_distance,

mean=2.0, stdev=0.1,

feature=features.Distance(atom1, atom2)))

mdl.restraints.excluded_pairs.append(ExcludedPair(atom1, atom2))

Retain stereochemistry

atmsel = Selection(mdl)

mdl.restraints.make(atmsel, restraint_type=’stereo’, spline_on_site=False)

Optimize the model with CG

cg = ConjugateGradients(output=’REPORT’)

cg.optimize(atmsel, max_iterations=100)

mdl.write(file=code+’.expair.pdb’)

5.3.4 Rigid bodies

You can mark groups of atoms as belonging to a rigid body. They will be moved together during optimization,
such that their relative orientations do not change. These are created by making a RigidBody object and adding
it to the Restraints.rigid bodies list.

Note that all intra-body atom pairs are removed from the nonbonded list, since those distances cannot change.
Thus these atom pairs will no longer contribute to any nonbonded interactions, such as Coulomb or Lennard-Jones
interactions. See also Selection.assess dope().

RigidBody(*atom ids)

Creates a new rigid body which contains all of the specified atoms. You can also tune the scale factor member
of the resulting object, which is used to scale the system state vector (used by ConjugateGradients() and
QuasiNewton() optimizations) to rigid body orientation Euler angles (in radians). (Note that no scaling is
done for the position of the rigid body; thus the units of this factor are effectively radians/Å.) This can improve
optimization convergence in some cases. By default the scaling factor is 1.0; values larger than 1 increase the
rotational sampling, while values less than 1 will decrease it.

Example: examples/python/rigid body.py

from modeller import *

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

mdl = Model(env, file=’1fas’)

Keep residues 1-10 in chain A rigid:

https://salilab.org/modeller/examples/python/rigid_body.py

5.3. SPATIAL RESTRAINTS 61

r = RigidBody(mdl.residue_range(’1:A’, ’10:A’))

mdl.restraints.rigid_bodies.append(r)

Randomize the coordinates of the whole model; the rigid body remains rigid

sel = Selection(mdl)

sel.randomize_xyz(deviation=4.0)

mdl.write(file=’1fas.ini’)

5.3.5 Symmetry restraints

You can restrain two groups of atoms to be the same during optimization of the objective function. This is achieved
by adding the sum of squares of the differences between the equivalent distances (similar to distance Rms deviation)
to the objective function being optimized. See Equation A.99.

After creating a Symmetry object, you can call its append function to add additional pairs of groups. This
allows some equivalent atoms to be weighted more strongly than others. Finally, add the Symmetry object to the
Restraints.symmetry list.

Symmetry(set1, set2, weight)

Creates a new symmetry restraint which will constrain the interatomic distances in set1 to be the same as in set2.
(The append function takes the same parameters.) Both sets are just lists of atoms or objects which contain atoms,
such as Residue or Selection objects. Note that each set must contain the same number of atoms. Note also that
the order is important. (If using Selection objects, the atoms are always sorted in the same order as seen in the
PDB file.)

See Section 2.2.12 for an example of using symmetry restraints with the AutoModel class.

Example: examples/commands/define symmetry.py

Example for: Model.symmetry.define()

This will force two copies of 1fas to have similar mainchain

conformation.

from modeller import *

from modeller.scripts import complete_pdb

from modeller.optimizers import ConjugateGradients, MolecularDynamics

log.level(1, 1, 1, 1, 0)

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

def defsym(mdl, seg1, seg2):

sel1 = Selection(mdl.residue_range(*seg1)).only_mainchain()

sel2 = Selection(mdl.residue_range(*seg2)).only_mainchain()

mdl.restraints.symmetry.append(Symmetry(sel1, sel2, 1.0))

Generate two copies of a segment:

mdl = complete_pdb(env, ’2abx’, model_segment=(’1:A’, ’74:B’))

mdl.rename_segments(segment_ids=(’A’, ’B’), renumber_residues=(1, 1))

myedat = EnergyData(dynamic_sphere = False)

atmsel = Selection(mdl)

atmsel.energy(edat=myedat)

https://salilab.org/modeller/examples/commands/define_symmetry.py

62 CHAPTER 5. MODELLER GENERAL REFERENCE

atmsel.randomize_xyz(deviation=6.0)

Define the two segments (chains in this case) to be identical:

defsym(mdl, seg1=(’1:A’, ’74:A’), seg2=(’1:B’, ’74:B’))

Create optimizer objects

cg = ConjugateGradients()

md = MolecularDynamics(md_return=’FINAL’)

Make them identical by optimizing the initial randomized structure

without any other restraints:

atmsel.energy(edat=myedat)

mdl.write(file=’define_symmetry-1.atm’)

cg.optimize(atmsel, max_iterations=300, edat=myedat)

mdl.write(file=’define_symmetry-2.atm’)

atmsel.energy(edat=myedat)

Now optimize with stereochemical restraints so that the

result is not so distorted a structure (still distorted

because optimization is not thorough):

myedat.dynamic_sphere = True

mdl.restraints.make(atmsel, restraint_type=’stereo’, spline_on_site=False,

edat=myedat)

atmsel.randomize_xyz(deviation=3.0)

for method in (cg, md, cg):

method.optimize(atmsel, max_iterations=300, edat=myedat, output=’REPORT’)

mdl.write(file=’define_symmetry-3.atm’)

atmsel.energy(edat=myedat)

Report on symmetry violations

mdl.restraints.symmetry.report(0.3)

Create a blank alignment so that superpose uses its 1:1 default

aln = Alignment(env)

mdl = Model(env, file=’define_symmetry-3.atm’, model_segment=(’1:A’, ’74:A’))

mdl2 = Model(env, file=’define_symmetry-3.atm’, model_segment=(’1:B’, ’74:B’))

atmsel = Selection(mdl).only_mainchain()

atmsel.superpose(mdl2, aln)

5.3. SPATIAL RESTRAINTS 63

Figure 5.1: Mathematical forms of restraints. Each mathematical form generates a contribution to the objective function

as a function of one or more features. Note that this contribution is the negative log of the probability density.

64 CHAPTER 5. MODELLER GENERAL REFERENCE

Chapter 6

Modeller command reference

6.1 Key for command descriptions

Most commands in Modeller take one or more arguments, usually as Pythonkeywords. For convenience, many
of these arguments take a default value if you do not specify them.

Each argument must be of a specific type, either a Modeller class object (e.g., a Model or Alignment) or one
of the standard Python types (integers, strings, floating point numbers, or lists of these types).

Many commands take optional io and/or edat arguments. io should always be an IOData() object, and is
used by commands that need to read coordinate files, while edat should be an EnergyData object, and is used
by commands that need to use the energy function. For convenience, if these arguments are not specified, default
values are taken from the Modeller environment (Environ.io and Environ.edat respectively).

6.2 The Environ class: Modeller environment

The Environ class contains most information about the Modeller environment, such as the energy function and
parameter and topology libraries (see section 6.1 for more information). Usually it is the first class to be used
in a Modeller script, as it provides methods to create the other main classes. In addition, some miscellaneous
commands are also provided as methods of the Environ class.

6.2.1 Environ() — create a new Modeller environment

Environ(rand seed=-8123, restyp lib file=’$(LIB)/restyp.lib’, copy=None)

This creates a new Environ object. rand seed is used to seed the random number generator used throughout
Modeller, and should be set to a negative integer between −2 and −50000 if you do not want to use the
default value. restyp lib file specifies the file to read the residue type library from; it should be a filename
or readable file handle (see modfile.File()). If unspecified, the default (’restyp.lib’) file is used. This
file contains the mapping between one-letter residue types and CHARMM and PDB names; see the FAQ
Section 3.1, Question 8 for the format of this file.

You can assign the new Environ object to the Python variable ’env’ with the following:

env = Environ()

You can release the object from memory when you no longer need it in standard Python fashion, either by
an explicit del(env) or by reassigning env to some other object.

When you create new Modeller objects (such as Model or Alignment objects) they require an Environ

object, which they use for their own default values. Note that each object gets a copy of the environment, so

65

https://www.python.org/
https://www.python.org/
https://www.python.org/

66 CHAPTER 6. MODELLER COMMAND REFERENCE

it is not affected by any changes you make to the global environment after its creation. You can, however,
modify the object’s own environment directly, by assigning to its .env member:

env = Environ()

env.io.hetatm = True # New objects will read HETATM records from PDB by default

mdl = model(env) # Create new model object (with hetatm=True)

mdl.env.io.hetatm = False # hetatm is now False, but only for ’mdl’

If in doubt, set anything you need to set within Environ before you create any objects.

6.2.2 Environ.io — default input parameters

This is an IOData object, which is used as the default by all routines which take an io argument (used for
reading coordinate files). See Section 6.4.

6.2.3 Environ.edat — default objective function parameters

This is an EnergyData object, which is used as the default by all routines which take an edat argument (used
to configure the energy function). See Section 6.3.

6.2.4 Environ.libs — Modeller libraries

This is a Libraries object, which contains all of the Modeller topology and parameter libraries. See
Section 6.5.

6.2.5 Environ.schedule scale — energy function scaling factors

This is used to scale the various contributions to the energy function (if not specified explicitly when calling
the energy function or an optimizer). It is a physical.Values() object. See Section 2.2.2 for an example.

6.2.6 Environ.dendrogram() — clustering

dendrogram(matrix file, cluster cut)

This command calculates a clustering tree from the input matrix of pairwise distances. This
matrix must be in the Phylip format and can be produced by the Alignment.id table(),
Alignment.compare sequences(), or Alignment.compare structures() commands. The weighted
pair-group average clustering method (as described at Model.transfer xyz()) is used.

The tree is written to the log file.

This command is useful for deciding about which known 3D structures are to be used as templates for
comparative modeling.

Example: See Alignment.id table() command.

6.2.7 Environ.principal components() — clustering

principal components(matrix file, file)

This command calculates principal components clustering for the input matrix of pairwise distances.
This matrix must be in the Phylip format and can be produced by the Alignment.id table(),
Alignment.compare sequences(), or Alignment.compare structures() commands.

6.2. THE ENVIRON CLASS: MODELLER ENVIRONMENT 67

The projected coordinates p and q are written to file file. The output file can be used with Asgl to produce
a principal components plot.

This command is useful for deciding about which known 3D structures are to be used as templates for
comparative modeling.

Example: See Alignment.id table() command.

6.2.8 Environ.system() — execute system command

system(command)

This command executes the specified operating system command, for example ‘rm’ or ‘ls’ on a Unix system,
or ‘dir’ on a Windows machine. This should be avoided in portable scripts, precisely because the available
commands differ between operating systems.

6.2.9 Environ.make pssmdb() — Create a database of PSSMs given a list of profiles

make pssmdb(profile list file, pssmdb name, profile format=’TEXT’, rr file=’$(LIB)/as1.sim.mat’,

matrix offset=0.0, matrix scaling factor=0.0069, pssm weights type=’HH1’)

This command takes a list of profiles, specified in profile list file, to calculate their Position Specific Scoring
Matrices (PSSM) and create a database of these PSSMs for use in Profile.scan().

The profiles listed in profile list file should be in a format that is understood by Profile.read(). For instance,
like those created by Profile.build() or Alignment.to profile. See documentation under Profile.read()
for help on profile format.

rr file is the residue-residue substitution matrix to use when calculating the position-specific scoring matrix
(PSSM). The current implementation is optimized only for the BLOSUM62 matrix.

matrix offset is the value by which the scoring matrix is offset during dynamic programming. For the BLO-
SUM62 matrix use a value of -450.

pssmdb name is the name for the output PSSM database.

Example: examples/commands/ppscan.py

Example for: Profile.scan()

from modeller import *

env = Environ()

First create a database of PSSMs

env.make_pssmdb(profile_list_file = ’profiles.list’,

matrix_offset = -450,

rr_file = ’${LIB}/blosum62.sim.mat’,

pssmdb_name = ’profiles.pssm’,

profile_format = ’TEXT’,

pssm_weights_type = ’HH1’)

Read in the target profile

prf = Profile(env, file=’T3lzt-uniprot90.prf’, profile_format=’TEXT’)

Read the PSSM database

psm = PSSMDB(env, pssmdb_name = ’profiles.pssm’, pssmdb_format = ’text’)

https://salilab.org/asgl/
https://salilab.org/modeller/examples/commands/ppscan.py

68 CHAPTER 6. MODELLER COMMAND REFERENCE

Scan against all profiles in the ’profiles.list’ file

The score_statistics flag is set to false since there are not

enough database profiles to calculate statistics.

prf.scan(profile_list_file = ’profiles.list’,

psm = psm,

matrix_offset = -450,

ccmatrix_offset = -100,

rr_file = ’${LIB}/blosum62.sim.mat’,

gap_penalties_1d = (-700, -70),

score_statistics = False,

output_alignments = True,

output_score_file = None,

profile_format = ’TEXT’,

max_aln_evalue = 1,

aln_base_filename = ’T3lzt-ppscan’,

pssm_weights_type = ’HH1’,

summary_file = ’T3lzt-ppscan.sum’)

6.3. THE ENERGYDATA CLASS: OBJECTIVE FUNCTION PARAMETERS 69

6.3 The EnergyData class: objective function parameters

The EnergyData class is used to configure the objective function, selecting which types of dynamic restraints (see
Section 5.3.1) to calculate (e.g., soft-sphere, Coulomb), and how to calculate them (e.g., distance cutoffs).

6.3.1 EnergyData() — create a new set of objective function parameters

EnergyData(copy=None, **kwargs)

This creates a new EnergyData object. The object will have the default parameters. You can, however,
specify any of these parameters when you create the object:

edat = EnergyData(contact shell=7.0)

Alternatively, you can set parameters in an existing object:

edat.contact shell = 7.0

Many commands use EnergyData objects. However, for convenience, the Environ class also contains an
EnergyData object, as Environ.edat. This is used as the default if you do not give an EnergyData parameter,
so you can set this to change the objective function used by all functions:

env = Environ()

env.edat.contact shell = 7.0

6.3.2 EnergyData.contact shell — nonbond distance cutoff

This defines the maximal distance (in angstroms) between atoms that flags a non-bonded atom pair. Such
pairs are stored in the list of non-bonded atom pairs. Only those non-bonded pairs that are sufficiently close
to each other will result in an actual non-bonded restraint. The default value is 4.0 Å.

If undefined (−999), the distance is the maximum of:

• If EnergyData.dynamic sphere is True, twice the radius of the largest atom multiplied by
EnergyData.radii factor (in the case of the all non-hydrogen atoms model, this is 3.2 Å).

• If EnergyData.dynamic lennard is True, EnergyData.lennard jones switch[1].

• If EnergyData.dynamic coulomb is True, EnergyData.coulomb switch[1].

• The maximum cutoff distance requested by any user-defined energy term, if the scaling factor of that
term is non-zero (see Section 7.1.3).

The best value for EnergyData.contact shell must be found in combination with EnergyData.update dynamic

(see also below). Good values are 4Å for EnergyData.contact shell and 0.39Å for EnergyData.update dynamic

when no Lennard-Jones and Coulomb terms are used; if EnergyData.contact shell is larger, there would be
many pairs in the non-bonded pairs list which would slow down the evaluation of the molecular pdf. If it is
too small, however, the increased frequency of the pair list recalculation may slow down the optimization.

This distance is also used for the calculation of atomic density; see section A.3.1.

6.3.3 EnergyData.update dynamic — nonbond recalculation threshold

This sets the cumulative maximal atomic shift (in angstroms) during optimization that triggers recalculation
of the list of atom–atom non-bonded pairs. It should be set in combination with EnergyData.contact shell.
The default value is 0.39 Å.

For soft-sphere overlap, to be absolutely sure that no unaccounted contacts occur, EnergyData.update dynamic

has to be equal to (EnergyData.contact shell – maximal overlap distance) / 2. maximal overlap distance

is equal to the diameter of the largest atom in the model; it is 3.2 Å in the case of the all non-hydrogen
atoms model. This distance is the EnergyData.contact shell value if a default is requested. Factor 2 comes
from the fact that the moves of both atoms can reduce the distance between them.

70 CHAPTER 6. MODELLER COMMAND REFERENCE

6.3.4 EnergyData.sphere stdv — soft-sphere standard deviation

This sets the standard deviation (in angstroms) of the lower bound harmonic potential used for the soft-sphere
restraints. The default value is 0.05 Å. See EnergyData.dynamic sphere.

6.3.5 EnergyData.dynamic sphere — calculate soft-sphere overlap restraints

If set to True (the default), the dynamic soft-sphere overlap restraints are calculated. Note that they are
only calculated if the scaled standard deviation of the soft-sphere overlap restraints is greater than zero.
It is simpler not to pre-calculate any soft-sphere overlap restraints and to use the dynamically generated
restraints alone, although this may be slower. The soft-sphere potential is simply a lower bound harmonic
restraint (see Equation A.82), with standard deviation EnergyData.sphere stdv, dropping to zero at the sum
of the two atoms’ van der Waals radii.

Soft sphere restraints require the model topology to first be generated with Model.generate topology().

6.3.6 EnergyData.dynamic lennard — calculate Lennard-Jones restraints

If set to True, dynamic Lennard-Jones restraints are calculated, using equation A.90. The default value is
False.

Lennard-Jones restraints require the model topology to first be generated with
Model.generate topology().

6.3.7 EnergyData.dynamic coulomb — calculate Coulomb restraints

If set to True, dynamic Coulomb (electrostatic) restraints are calculated, using equation A.87. The default
value is False.

6.3.8 EnergyData.dynamic modeller — calculate non-bonded spline restraints

If set to True, dynamic Modeller non-bonded spline restraints are calculated. These include the loop
modeling potential and DOPE. The actual library of spline restraints is selected for a model by setting
Model.group restraints. The default value is False.

6.3.9 EnergyData.excl local — exclude certain local pairs of atoms

This specifies whether or not the atoms in a chemical bond, chemical angle, dihedral angle, and in the
excluded pairs list respectively are considered in the construction of the non-bonded atom pairs list, and
distance restraints. This is especially useful when simplified protein representations are used; e.g., when
non-bonded restraints need to be used on Cαi – Cαi+2 terms.

6.3.10 EnergyData.radii factor — scale atomic radii

This is the scaling factor for the atom radii as read from the $RADII LIB library file. The scaled radii are
used only for the calculation of violations of the soft-sphere overlap restraints and by Model.write data().
Note that which radii to first read from the library file are determined by the Topology.submodel variable.
The default value is 0.82.

6.3.11 EnergyData.lennard jones switch — Lennard-Jones switching parameters

These are the parameters f1 and f2 to the Lennard-Jones switching function, which smoothes the potential
down to zero; see equation A.90. The default values are

6.5, 7.5

6.3. THE ENERGYDATA CLASS: OBJECTIVE FUNCTION PARAMETERS 71

.

6.3.12 EnergyData.coulomb switch — Coulomb switching parameters

These are the parameters f1 and f2 to the Coulomb switching function, which smoothes the potential down
to zero; see equation A.87. The default values are

6.5, 7.5

.

6.3.13 EnergyData.relative dielectric — relative dielectric

This sets the relative dielectric ǫr, used in the calculation of the Coulomb energy (equation A.87). The
default value is 1.0.

6.3.14 EnergyData.covalent cys — use disulfide bridges in residue distance

This modulates the effect of residue span range; if True, the disulfide bridges are taken into account when
calculating the residue index difference between two atoms (i.e., disulfides make some atom pairs closer in
sequence). EnergyData.covalent cys = True is slow and only has an effect when certain statistical non-bonded
potentials are used (i.e., EnergyData.dynamic modeller is True and the non-bonded library has been derived
considering the disulfide effect). Thus, it should generally be set to False (the default).

6.3.15 EnergyData.nonbonded sel atoms — control interaction with picked atoms

This specifies the number of atoms that must be selected in each nonbonded pair, in order for the energy
term to be calculated. Thus, when only a subset of all atoms is used in energy evaluation, this variable
controls the interaction between the picked atoms and the rest of the system. When it is 2, the non-bonded
pairs will contain only selected atoms. This means that the optimized atoms will not “feel” the rest of the
protein through the non-bonded terms at all.

If EnergyData.nonbonded sel atoms is 1 (the default), only one of the atoms in the non-bonded pair has to
be a selected atom. This means that the selected region feels the rest of the system through the non-bonded
terms, at the expense of longer CPU times.

See Section 2.2.6 for an example.

When all atoms are selected, this variable has no effect.

6.3.16 EnergyData.nlogn use — select non-bond list generation algorithm

Before calculating dynamic non-bonded restraints, Modeller determines which of the several routines
is most appropriate and efficient for calculating the non-bonded atom pairs list. The user can use
this variable to influence the selection, of either a straightforward O(n2) search or a cell-based algo-
rithm which has n log n dependency of CPU time versus size n. The latter algorithm is used when
the maximal difference in residue indices of the atoms in the current dynamic restraints is larger than
EnergyData.nlogn use, EnergyData.contact shell is less than 8Å, the necessary number of cells is less than
EnergyData.max nlogn grid cells and fits in an integer without overflow, and there is sufficient system mem-
ory to store the cells. The default value is 15.

6.3.17 EnergyData.max nlogn grid cells — maximum number of grid cells for NlogN
nonbond pairs routine

This sets the maximum number of grid cells that can be used for the NlogN nonbond pairs routine (see
EnergyData.nlogn use). The default value (26214400) prevents the grid sorting algorithm from using more

72 CHAPTER 6. MODELLER COMMAND REFERENCE

than approximately 200MiB of memory. In most cases this is more than sufficient memory; a grid larger
than this is usually a symptom of a badly-performing optimization in any case (the system is blowing apart
with huge distances between protein domains).

6.3.18 EnergyData.energy terms — user-defined global energy terms

This holds a list of Python objects, each of which is used to add user-defined terms to the energy function.
See Section 7.1.3.

https://www.python.org/

6.4. THE IODATA CLASS: COORDINATE FILE INPUT PARAMETERS 73

6.4 The IOData class: coordinate file input parameters

The IOData class stores information useful in reading coordinate files. This is used both for reading models, and
for reading coordinate files used for templates.

6.4.1 IOData() — create a new input parameters object

IOData(copy=None, **kwargs)

This creates a new IOData object, with default parameters. You can, however, specify any of these parameters
when you create the object:

io = IOData(hetatm=True)

Alternatively, you can set parameters in an existing object:

io.hetatm = True

Many commands use IOData objects. However, for convenience, the Environ class also contains an IOData

object, as Environ.io. This is used as the default if you do not give an IOData parameter, so you can set this
to change the input configuration used by all functions:

env = Environ()

env.io.hetatm = True

Please note that IOData.hetatm, IOData.hydrogen, IOData.convert modres, IOData.hybrid36,
IOData.two char chain and IOData.water are ignored when reading UHBD files. When reading CHARMM

files, IOData.hetatm, IOData.convert modres, IOData.hybrid36 and IOData.two char chain are ignored.

6.4.2 IOData.hetatm — whether to read HETATM records

If set to True, then all non-water ’HETATM’ records are read from PDB, mmCIF or BinaryCIF files. (By
default, only ’ATOM’ records are read. To read waters, use IOData.water.) Note that you will usually need to
turn this on when using BLK residues, or if you want to use a PDB, mmCIF, or BinaryCIF file containing
ligands.

6.4.3 IOData.hydrogen — whether to read hydrogen atoms

If set to True, then hydrogen atoms are read from PDB, mmCIF, BinaryCIF, or CHARMM files. (By
default, only heavy atoms are read.) You will need to turn this on when building all-atom models, although
note that the AllHModel class does this for you automatically.

6.4.4 IOData.water — whether to read water molecules

If set to True, then water molecules are read. (For PDB, mmCIF, or BinaryCIF files, this is regardless of
whether they are in ’ATOM’ or ’HETATM’ records.) Ordinarily, they are ignored. (See ’${LIB}/restyp.lib’
for the definition of a water molecule used by Modeller.)

6.4.5 IOData.convert modres — whether to convert modified residues

By default, some special handling is done for certain commonly-used modified residues. The MSE residue
type is mapped to the regular MET amino acid, and the SE atom in this residue is mapped to SD. MSE
residues are treated as regular amino acids (’ATOM’ records) regardless of whether they are marked as ’ATOM’
or ’HETATM’ in the PDB, mmCIF, or BinaryCIF file (thus, even if the modified residue is marked as ’HETATM’
and IOData.hetatm is False, it will still be read in). This behavior can be disabled by setting this variable
to False.

74 CHAPTER 6. MODELLER COMMAND REFERENCE

6.4.6 IOData.hybrid36 — whether to read PDB files conformant with hybrid-36

Models containing 100,000 or more atoms, or residues numbered 10,000 or higher, cannot be represented in
traditional PDB format (as the atom serial number is a fixed 5 digits, and the residue number 4 digits). If
this variable is set True, the default, Modeller will work around this problem by reading a slightly-modified
PDB format, hybrid-36, which allows for up to 87,440,031 atoms and residue numbers up to 2,436,111. (See
also IOData.two char chain for similar handling of chain IDs longer than a single character.) This can be set
False to strictly conform to the traditional PDB format.

Note that Modeller will always use hybrid-36 to write out PDB files, as hybrid-36 is the same as traditional
PDB for small numbers of atoms and residues. (Thus, to maximize compatibility, avoid large atom or residue
numbers if possible.)

Use of the mmCIF format is encouraged when working with large systems.

6.4.7 IOData.two char chain — whether to read PDB files with two-character chain
IDs

Models containing chain names longer than a single character cannot be represented in traditional PDB
format as only a single column is allocated for the chain ID. If this variable is set True, the default, Modeller

will support two-character chain IDs, by using the otherwise-unused column 21 (between the residue name
and chain ID). (See also IOData.hybrid36 for similar handling of large residue and atom numbers.) This can
be set False to strictly conform to the traditional PDB format, for example when dealing with software such
as AMBER that uses column 21 for another purpose, such as longer residue names.

Note that Modeller will always use this scheme to write out PDB files, as it is the same as traditional
PDB for single-character chain IDs. (Thus, to maximize compatibility, avoid two-character chain names.)

Use of the mmCIF format is encouraged when working with large systems.

6.4.8 IOData.atom files directory — search path for coordinate files

This is a Python list of directories in which to search for coordinate files. (By default, only the current
directory is searched.) PDB-style subdirectories (the last two but one characters in the PDB code) are
also searched for each directory e.g., 1abc is searched for in the ’ab’ subdirectory, pdb4xyz.ent in the ’xy’
subdirectory, and the new-style 12-character extended PDB ID PDB 12345678 in the ’67’ subdirectory.

http://cci.lbl.gov/hybrid_36/
https://www.python.org/

6.5. THE LIBRARIES CLASS: STEREOCHEMICAL PARAMETERS AND MOLECULAR TOPOLOGY 75

6.5 The Libraries class: stereochemical parameters and molecular
topology

6.5.1 Libraries.topology — topology library information

This contains the current topology library information. See Topology.append() for more information.

6.5.2 Libraries.parameters — parameter library information

This contains the current parameter library information. See Parameters.append() for more information.

6.5.3 Topology.append() — append residue topology library

append(file)

This command reads residue topologies from the topology library given by file, such as the Charmm 22
topology file [MacKerell et al., 1998]. This file must include atomic connectivities of residues and patching
residues, and the internal coordinates for minimum energy residue conformations. Patching residues modify
residues; for example, N-terminus, C-terminus and disulfide bonds are defined by patching the original
topology. This information is used for generating the molecular topology and possibly for calculating an
initial conformation. To define your entries in the topology library, see the FAQ Section 3.1, Questions 8
and 9.

file can be a filename or a readable file handle (see modfile.File()).

This command also sets Topology.submodel appropriately to match the topology library, assuming a suitable
header is found in the library file (see Topology.submodel). For example, the default topology for comparative
modeling by Modeller includes only non-hydrogen atoms (Topology.submodel = 3).

The new residue topologies are added to the existing residue topologies. (To replace the old topology, call
Topology.clear() first.) If the topology for a residue is duplicated, only the last definition is kept.

Not all the features of the Charmm 22 topology library are implemented in Modeller, although a Charmm

file should be read in successfully. A variety of topology files for different kinds of models can be prepared
by the Topology.make() command.

Example: See Model.patch() command.

6.5.4 Topology.clear() — clear residue topology library

clear()

This deletes all topology information from the library.

6.5.5 Topology.read() — read residue topology library

read(file)

This is shorthand for calling Topology.clear() followed by Topology.append().

6.5.6 Parameters.append() — append parameters library

append(file)

76 CHAPTER 6. MODELLER COMMAND REFERENCE

This command reads the parameters from the parameter library given by file, such as the Charmm 22
parameter file for proteins with all atoms [MacKerell et al., 1998]. The parameters are added to any already
in memory. This file contains the values for bond lengths, angles, dihedral angles, improper dihedral angles,
and non-bonded interactions. Modeller relies on slightly modified Charmm-22 parameters to reproduce
the protein geometry in the Modeller environment. For example, for the default non-hydrogen atoms
model, the ω dihedral angle restraints are stronger than the original Charmm 22 values which apply to the
all-hydrogen model. For a sparse discussion of the parameter library, see the FAQ Section 3.1, Question 8.

Note that, in contrast to older versions of Modeller, the non-bonded spline parameters used in loop
modeling are not read by this function. See instead the documentation for the separate GroupRestraints

class, in section 6.13, for more information.

file can be a filename or a readable file handle (see modfile.File()).

Example: See Model.patch() command.

6.5.7 Parameters.clear() — clear parameters library

clear()

This deletes all parameter information from the library.

6.5.8 Parameters.read() — read parameters library

read(file)

This is shorthand for calling Parameters.clear() followed by Parameters.append().

6.5.9 Topology.make() — make a subset topology library

make(submodel)

This command makes a residue topology library from the most detailed Charmm topology library, which
contains all atoms, including all hydrogens (corresponding to Topology.submodel = 1). There are currently
ten residue topologies, all of which are defined in library $MODELS LIB, which is also read in by this function.
For example, the default non-hydrogen atom topology is selected by submodel = 3. For each submodel and
residue type, the $MODELS LIB library lists those atoms in the full atom set that are part of the specified
topology.

This command works by deleting all the entries that contain non-existing atoms from the original topology
file. The charge of each removed atom is redistributed equally between the atoms directly bonded to it
(if any of these atoms is in turn marked for deletion, the charge is instead placed on that atom’s bonded
neighbors, and so on). Any remaining charge is then spread around the entire residue, in proportion to the
absolute charge of each atom.

One must carefully test topology files produced in this way. Library $RADII LIB must specify atomic radii
for each atom in each residue type for each topology model. submodel must be an integer from 1 to 10. On
exit from this routine, Topology.submodel is set to submodel.

For more information about the topology library, see the FAQ Section 3.1, Questions 8 and 9.

Example: examples/commands/make topology model.py

Example for: topology.make(), topology.write()

This creates a topology library for heavy atoms from the

https://salilab.org/modeller/examples/commands/make_topology_model.py

6.5. THE LIBRARIES CLASS: STEREOCHEMICAL PARAMETERS AND MOLECULAR TOPOLOGY 77

CHARMM all-atom topology library:

from modeller import *

env = Environ()

tpl = env.libs.topology

Read CHARMM all-atom topology library:

tpl.read(file=’${LIB}/top.lib’)

Keep only heavy atoms (TOPOLOGY_MODEL = 3)

tpl.make(submodel=3)

Write the resulting topology library to a new file:

tpl.write(file=’top_heav.lib’)

6.5.10 Topology.submodel — select topology model type

This is used to select the type of topology model currently in use; see Topology.make() for more infor-
mation. Note that it is not usually necessary to explicitly set Topology.submodel, since it is set for you
automatically when you read a topology file (all of the standard Modeller topology files include a ’*

MODELLER topology.submodel’ header from which this information is derived). See Topology.read().

6.5.11 Topology.write() — write residue topology library

write(file)

This command writes a residue topology library to the specified file. It is usually used after
Topology.make().

file can be either a file name or a modfile.File() object open in write mode.

Example: See Topology.make() command.

78 CHAPTER 6. MODELLER COMMAND REFERENCE

6.6 The Model class: handling of atomic coordinates, and model build-
ing

The Model class holds all information about a 3D model (such as its Cartesian coordinates, topology, and opti-
mization information). It also provides methods for reading, writing and transforming the model. Models are also
sequences, so all methods and attributes of Sequence objects (see Section 6.17) are also available for models (e.g.,
Sequence.residues, Sequence.chains).

6.6.1 Model() — create a new 3D model

Model(env, **vars)

This creates a new Model object. If used with no parameters, the new model is empty (i.e., it contains no
atoms). However, if any keyword arguments are given, they are passed to the Model.read() function to
read in an initial model. See the Model.to iupac() example.

6.6.2 Model.seq id — sequence identity between the model and templates

This is set by Modeller during model building when Model.transfer xyz() is called. It is also read from
or written to Modeller-produced PDB files or mmCIF files (see Model.write()).

You should set Model.seq id explicitly if you want to carry out GA341 assessment on a model not produced
by Modeller, as the sequence identity is not known in this case. See Model.assess ga341().

6.6.3 Model.resolution — resolution of protein structure

This is the resolution of the protein structure, as read from a PDB ’REMARK 2 RESOLUTION’ line or mm-
CIF/BinaryCIF file. For NMR structures, and models built by Modeller, the resolution is set to -1
(undefined).

6.6.4 Model.last energy — last objective function value

This is the last value of the objective function. It is written into PDB files and mmCIF files (and is read
back from Modeller-produced PDB or mmCIF files); see Model.write().

6.6.5 Model.remark — text remark(s)

This is a text remark, written by Modeller into PDB files verbatim. You can add multiple remarks by
assigning a multi-line Python string to Model.remark. It is up to you to add a suitable ’REMARK’ prefix to
your remark so that it is in valid PDB format.

Note that Model.remark is not read in from PDB files by Model.read(); it is used only for writing out your
own custom remarks.

Example: See Model.build() command.

6.6.6 Model.restraints — all static restraints which act on the model

This provides the static restraints themselves, and methods to manipulate them. See section 6.7 for more
information.

https://www.python.org/

6.6. THE MODEL CLASS: HANDLING OF ATOMIC COORDINATES, AND MODEL BUILDING 79

6.6.7 Model.group restraints — all restraints which act on atom groups

This can be assigned to a GroupRestraints object in order for dynamic restraints on atom groups
to be calculated. (If set to None, the default, then no such restraints are evaluated.) Note that
EnergyData.dynamic modeller must also be set to True.

Example: See GroupRestraints() command.

6.6.8 Model.atoms — all atoms in the model

This is a standard Python list of all the atoms in the model. This can be used to query individual atom
properties (e.g. coordinates) or to specify atoms for use in restraints, etc.

Atoms can be individually accessed in two ways:

• A string of the form ’ATOM NAME:RESIDUE #[:CHAIN ID]’, where ATOM NAME is the four char-
acter IUPAC atom name as found in a PDB file, RESIDUE # is a five character residue number as it
occurs in the PDB file of a model, and the optional CHAIN ID is the single character chain id as it
occurs in the PDB file. For example, if ’m’ is a Model object, the carbonyl oxygen (O) in residue ’10A’
in chain ’A’ is given by ’m.atoms[’O:10A:A’]’; if the chain has no chain id, ’m.atoms[’O:10A’]’
would be sufficient.

• By numeric index, starting from zero, in standard Python fashion. For example, if ’m’ is a Model

object, ’m.atoms[0]’ is the first atom, ’m.atoms[-1]’ is the last atom, and ’m.atoms[0:10]’ is a
list of the first 10 atoms (0 through 9). (Note that the atom numbers in PDB files and Modeller

restraint files start from 1, so will always be 1 larger than any index you use here.)

See Section 6.23 for more information about Atom objects. See also Sequence.residues and Sequence.chains

for equivalent lists of residues and chains. See also Model.atom range(), for getting a contiguous range of
atoms.

6.6.9 Model.point() — return a point in Cartesian space

point(x, y, z)

This returns an object defining a point in the Cartesian space of this model. See Section 6.22.

Example: See Selection() command.

6.6.10 Model.atom range() — return a subset of all atoms

atom range(start, end)

This returns a list of a subset of atoms from the model, from start to end inclusive. Both start and end must
be valid atom indices (see Model.atoms). For example, if ’m’ is a Model object, ’m.atom range(’CA:1’,

’CB:10’)’ returns a list of all atoms from the ’CA’ atom in residue ’1’ to the ’CB’ atom in residue ’10’,
inclusive. This sublist can be accessed in just the same way as Model.atoms.

6.6.11 Model.residue range() — return a subset of all residues

residue range(start, end)

This returns a list of a subset of residues from the model, from start to end inclusive. Both start

and end must be valid residue indices (see Sequence.residues). For example, if ’m’ is a Model object,
’m.residue range(’1’, ’10’)’ returns a list of all residues from PDB residue ’1’ to PDB residue ’10’,
inclusive. This sublist can be accessed in just the same way as Sequence.residues.

https://www.python.org/
https://www.python.org/

80 CHAPTER 6. MODELLER COMMAND REFERENCE

6.6.12 Model.get insertions() — return a list of all insertions

get insertions(aln, minlength, maxlength, extension, include termini=True)

This returns a list of all insertions (i.e., residue ranges in which the model sequence, which must be the last
in the alignment aln, is aligned only with gaps in the other sequences). Each residue range is extended by
extension residues either side of the insertion, and is only returned if it is at least minlength residues long,
but not longer than maxlength.

If include termini is False, any residue range that includes a chain terminus is excluded from the output.

See also Model.get deletions(), Model.loops().

Example: See Selection() command.

6.6.13 Model.get deletions() — return a list of all deletions

get deletions(aln, extension, include termini=True)

This returns a list of all deletions (i.e., residue ranges in which gaps in the model sequence, which must be
the last in the alignment aln, are aligned to residues in the other sequences). Each residue range is extended
by extension residues either side of the deletion.

If include termini is False, any residue range that includes a chain terminus is excluded from the output.

See also Model.get insertions(), Model.loops().

Example: See Selection() command.

6.6.14 Model.loops() — return a list of all loops

loops(aln, minlength, maxlength, insertion ext, deletion ext, include termini=True)

This returns a list of all loops, by calling Model.get insertions() and Model.get deletions().

If include termini is False, any residue range that includes a chain terminus is excluded from the output.

Example: See Selection() command.

6.6.15 Model.read() — read coordinates for MODEL

read(file, model format=’PDB ANY’, model segment=(’FIRST:@’, ’LAST:’), io=None,

keep disulfides=False)

This command reads the atomic coordinates, atom names, residue names, residue numbers1, isotropic tem-
perature factors and segment specifications for MODEL, assigns residue types, and defines the dihedral
angles listed in the $RESDIH LIB library. For CHARMM and UHBD file formats, it also reads the atomic charges.
However, it does not assign Charmm and Modeller atom types, internal coordinates, charges (in the case
of the ’PDB’, ’MMCIF’ or ’BCIF’formats), or patches (such as disulfides); to make these assignments, which
are necessary for almost all energy commands, use Model.generate topology().

file can be a filename or a readable file handle (see modfile.File()).

1for mmCIF or BinaryCIF format, author-provided residue numbers (atom site.auth seq id) are used if available rather than the
canonical sequence id (atom site.label seq id)

6.6. THE MODEL CLASS: HANDLING OF ATOMIC COORDINATES, AND MODEL BUILDING 81

The ’PDB ANY’ file format (the default) will read any PDB-like file; it will read an mmCIF file if the filename
ends in ’.cif’, or a BinaryCIF file if the filename ends in ’.bcif’; otherwise it will read a PDB file. (The
’PDB OR MMCIF’ format is similar except that it will not read BinaryCIF.)

The PDB residue type ’HIS’ is assigned the Charmm residue type ’HSD’, which is the neutral His with H
on ND1. The PDB types ’ASP’ and ’GLU’ are assigned the corresponding charged Charmm residue types,
as are ’LYS’ and ’ARG’. These conventions are relevant only if Coulomb terms and/or hydrogens are used.

Certain noncanonical residues (such as MSE) are automatically mapped to their closest canonical types by
default; see IOData.convert modres for more details.

model segment sets the beginning and ending residue identifiers for the contiguous sequence of residues to
be read from the PDB, mmCIF or BinaryCIF file (this option does not work yet for the other file formats).
The format of residue identifiers is described in Section B.1.

keep disulfides, if set to True, will preserve any disulfide information already stored in the model. (The
default is False, which discards it.) This should only be used if the model being read in is guaranteed to
have the same sequence and atom ordering as the model in memory. This is primarily used by the AutoModel
class to copy SSBOND records from the initial model (.ini file) to final output models.

Note that this command reads in the model file directly, and does no special handling to ensure the file
is suitable for energy evaluations (e.g., that it has no missing atoms). If you want to read in a PDB file
from PDB or generated from an experiment or some other program, it is recommended that you use the
complete pdb() script instead.

For PDB, mmCIF or BinaryCIF files with alternate locations (characters in column 17 of PDB ATOM or
HETATM records; ’ atom site.label alt id’ in mmCIF or BinaryCIF), Modeller reads only the first
alternate location encountered for each residue. (This differs from older versions of Modeller, which would
read only alternate locations marked with A or 1.)

For PDB files that contain multiple models (each starting with a ’MODEL’ record and ending with an ’ENDMDL’

record), only the first model is read. For mmCIF or BinaryCIF files, only models in the first ’data ’ block
and with ’ atom site.pdbx PDB model num’ equal to 1 are read.

Modeller understands hybrid-36 notation, so can read PDB files containing residues numbered 10,000 or
higher, or 2-character chain names. See IOData.hybrid36 and IOData.two char chain.

The model’s R value is read from appropriately formatted PDB REMARKs or the mmCIF/BinaryCIF
’ refine’ or ’ pdbx refine’ categories and is available as Sequence.rfactor. The first valid R value (not
free R) found in the PDB file is used.

Some Modeller-specific REMARKs are also read from PDB files if they are present. See Model.write()
for a list of such REMARKs. The same information is read from mmCIF or BinaryCIF files fromModeller-
specific categories.

Certain residues (e.g., waters or HETATM records) can be skipped when reading the file, and some modified
residues are automatically converted to the nearest equivalent standard amino acids; see IOData().

This command can raise a FileFormatError if the atom file format is invalid.

Example: examples/commands/read model.py

Example for: Model.read(), Model.write()

This will read a PDB file and write both CHARMM and mmCIF atom files without

atomic charges or radii. For assigning charges and radii, see the

all_hydrogen.py script.

from modeller import *

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

mdl = Model(env)

mdl.read(file=’1fas’)

http://cci.lbl.gov/hybrid_36/
https://salilab.org/modeller/examples/commands/read_model.py

82 CHAPTER 6. MODELLER COMMAND REFERENCE

mdl.write(file=’1fas.crd’, model_format=’CHARMM’)

mdl.write(file=’1fas.cif’, model_format=’MMCIF’)

6.6.16 Model.build sequence() — build model from a sequence of one-letter codes

build sequence(sequence, special patches=None, patch default=True, blank single chain=False)

This builds a new model (overwriting any existing one) of the given sequence, specified as one-letter codes.
The sequence can also contain ’/’ characters to build multi-chain models. The coordinates of the model are
automatically constructed using Model.build().

special patches, blank single chain, and patch default can be used to adjust the topology; see
Model.generate topology() for more details.

See also Alignment.append sequence().

Example: examples/commands/build sequence.py

This demonstrates the use of Alignment.append_sequence() and

Model.build_sequence() to build residue sequences from one-letter codes

from modeller import *

env = Environ()

Read parameters (needed to build models from internal coordinates)

env.libs.topology.read(’${LIB}/top_heav.lib’)

env.libs.parameters.read(’${LIB}/par.lib’)

Create a new empty alignment and model:

aln = Alignment(env)

mdl = Model(env)

Build a model from one-letter codes, and write to a PDB file:

mdl.build_sequence("AFVVTDNCIK/CKYTDCVEVC")

mdl.write(file=’sequence.pdb’)

Build an alignment from one-letter codes

aln.append_sequence("AF---VVTDN---CIKCK------")

aln.append_sequence("-------AFVVTDN--CI--K-CK")

Set alignment information, and write to file:

aln[0].code = ’seq1’

aln[1].code = ’seq2’

aln.write(file=’sequence.ali’)

6.6.17 Model.write() — write MODEL

write(file, model format=’PDB’, no ter=False, extra data=’’)

This command writes the current MODEL to a file in the selected format.

file can be a filename or a writeable file handle (see modfile.File()).

https://salilab.org/modeller/examples/commands/build_sequence.py

6.6. THE MODEL CLASS: HANDLING OF ATOMIC COORDINATES, AND MODEL BUILDING 83

If you want to only write out a subset of the atoms, see Selection.write().

Setting model format to ’PDB’ writes out files in the Protein Data Bank (PDB) format. Note that the
isotropic temperature factor (Biso) field can be set by Selection.energy() or Model.write data().

’MMCIF’ writes out files in the new PDBx or Macromolecular Crystallographic Information File (mmCIF)
format.

Note that if the model contains 100,000 or more atoms, residues numbered 10,000 or higher, or chain names
longer than a single character, it cannot be represented in traditional PDB format (as the atom serial number
is a fixed 5 digits, the residue number 4 digits, and the chain ID a single character). Modeller will work
around this by using hybrid-36 notation, which is understood by many PDB readers. (Note that this is
always done for large systems, regardless of the setting of IOData.hybrid36 and IOData.two char chain.) In
general, however, mmCIF output is recommended for large systems.

The ’GRASP’ format is the same as the ’PDB’ format, except that it includes two special lines at the top of
the file and the atomic radii and charges in the columns following the Cartesian coordinates of atoms. This
format is useful for input to program Grasp, written by Anthony Nicholls in the group of Barry Honig at
Columbia University [Nicholls et al., 1991]. For GRASP output, the atomic radii are needed. This usually
means using the complete pdb() script rather than Model.read() to read in any original PDB file.

If the model contains any disulfide bridges, CONECT and SSBOND records for each bridge are included when
writing out PDB files (note that CONECT records for other contacts, such as between HETATM residues, are
not included). For mmCIF files, equivalent struct conn records are written.

A number of Modeller-specific REMARKs are added when writing out PDB files (and are parsed when
reading such files back in with Model.read()). For mmCIF files, the same information is stored in the
’ modeller’ or ’ modeller blk’ categories (shown in parentheses below):

• REMARK 6 MODELLER OBJECTIVE FUNCTION (modeller.objective function): the value of
Model.last energy.

• REMARK 6 MODELLER BEST TEMPLATE % SEQ ID (modeller.best template pct seq id): the value of
Model.seq id.

• REMARK 6 MODELLER BLK RESIDUE (modeller blk.resid): for each residue treated as a BLK, the
residue number and chain ID. (This ensures that when the model is read back in, those BLK residues
are still treated as BLK, even if the topology file contains a definition for that residue type.)

The contents of Model.remark are also added to PDB files verbatim.

If no ter is set to True then no TER records are written to PDB files (normally these are added at the end of
each amino acid chain).

If extra data is given, its contents are also added to PDB or mmCIF files verbatim (so it must be formatted
correctly for each format).

Example: See Model.read() command.

6.6.18 Model.clear topology() — clear model topology

clear topology()

This removes any information from the model about covalent topology and primary sequence. See also
Model.generate topology().

6.6.19 Model.generate topology() — generate MODEL topology

generate topology(alnseq, patch default=None, blank single chain=False, io=None)

http://cci.lbl.gov/hybrid_36/

84 CHAPTER 6. MODELLER COMMAND REFERENCE

This command calculates the model’s covalent topology (i.e., atomic connectivity) and internal coordinates,
and assigns Charmm atom types, Modeller atom types for non-bonded spline restraints, atomic charges,
and atomic radii.

The residue sequence to generate is taken from the alignment sequence given by alnseq.

The sequence is added to the model as a new chain; if you want to first remove any existing chains, call
Model.clear topology() prior to this command.

A sequence in the alignment can use any residue listed in the single-character code column of the $RESTYP LIB

library (’modlib/restyp.lib’). Examples of non-standard residue types include water (’w’), zinc (’z’),
calcium (’3’), heme (’h’), and many others. If you wish to use patch residues, use Model.patch()
subsequently. You can generate multiple chains by including chain break characters ‘/’ in the alignment. A
chain break prevents Modeller from connecting two otherwise adjacent residues.

By default, the chains are labeled ’A’, ’B’, ’C’ and so on. However, if only one chain is generated, and
blank single chain is set True, it is given a blank chain ID. Residues in each chain are numbered sequen-
tially, starting at 1. If you want to use the chain IDs and residue numbers from an existing PDB file, use
Model.res num from().

If patch default is True, each chain in the sequence is patched with the ’NTER’ and ’CTER’ patches (see
Model.patch()). These patches are applied to the first and last residue respectively in a connected chain of
residues (generally this excludes residues that are not in the amino acid chain, such as HETATM residues).

The Model.generate topology() command generates only the topology of the model, not its Cartesian
coordinates; the Cartesian coordinates are assigned by the Model.build(), Model.transfer xyz(), or
Model.read() commands.

In general, the Model.generate topology() command has to be executed before any energy commands
(Selection.energy(), Selection.hot atoms()) or optimizations (Section 6.11).

The variables Sequence.atom file, io and Topology.submodel are necessary only when residues lacking topology
information (e.g., ’BLK’ residues) are present in the sequence. In that case, the template PDB files are read
in.

Example: See Model.patch() command.

6.6.20 Model.make valid pdb coordinates() — make coordinates fit in PDB format

make valid pdb coordinates()

This command ensures that all of the model’s coordinates can be written out to a PDB file. Since the PDB
format is fixed width, there is a maximum size beyond which x, y or z coordinates cannot be represented;
they cannot be smaller than -999.999 or larger than 9999.999. This command ensures that the coordinates
lie in this range by simply reflecting them if necessary.

6.6.21 Model.write psf() — write molecular topology to PSF file

write psf(file, xplor=True)

This command writes the current model topology (which must have already been created via
Model.generate topology() or complete pdb) to a Charmm or X-PLOR format PSF file or file handle
(see modfile.File()).

PSF files contain information on all atoms in the model and their types, plus all the connectivity (bonds,
angles, etc). By default X-PLOR format PSF files are written, in which each atom has a defined type name.
These are more flexible than Charmm format PSF files, in which each atom type is specified numerically.

PSF files are generally required in combination with binary format trajectory files, as written by
actions.CHARMMTrajectory().

Example: See actions.CHARMMTrajectory() command.

6.6. THE MODEL CLASS: HANDLING OF ATOMIC COORDINATES, AND MODEL BUILDING 85

6.6.22 Model.patch() — patch MODEL topology

patch(residue type, residues)

This command uses a Charmm patching residue to patch the topology of the MODEL. Charmm patch rules
are observed.

residue type is the type of the patching residue (PRES entry in the topology library), such as ’DISU’, ’NTER’,
’CTER’, etc. You do not have to apply explicitly the N- and C-terminal patches to protein chains because
the ’NTER’ and ’CTER’ patches are applied automatically to the appropriate residue types at the termini of
each chain at the end of each Model.generate topology() command.

residues should be one or more Residue objects to be patched. The first residue is the patched residue 1, the
second residue is the patched residue 2, etc; for example, the ’DISU’ patching residue has two patched Cys
residues while the ’ACE’ patching residue has only one patched residue. The order of the residue identifiers
here has to match the definition of the patching residue in the topology library.

It is not allowed to patch an already patched residue. Since the N- and C-terminal residues of each chain
are automatically patched with the ’NTER’ and ’CTER’ patching residues, respectively, a user who wants to
patch the N- or C-terminal residues with other patches, should turn the default patching off before executing
Model.generate topology(). This is achieved by setting patch default = False.

Example: examples/commands/patch.py

Example for: Model.patch(), topology(), parameters.read()

This will define a CYS-CYS disulfide bond between residues 3 and 22.

from modeller import *

from modeller.scripts import complete_pdb

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

Create the disulfide bond:

def patches(mdl):

mdl.patch(residue_type=’DISU’, residues=(mdl.residues[’3:A’],

mdl.residues[’22:A’]))

Read the sequence:

code = ’1fas’

mdl = complete_pdb(env, code, special_patches=patches)

Create the stereochemical restraints

sel = Selection(mdl)

mdl.restraints.make(sel, restraint_type=’stereo’, spline_on_site=False)

Calculate the energy to test the disulfide:

sel.energy()

6.6.23 Model.patch ss templates() — guess MODEL disulfides from templates

patch ss templates(aln, io=None)

https://salilab.org/modeller/examples/commands/patch.py

86 CHAPTER 6. MODELLER COMMAND REFERENCE

This command defines and patches disulfide bonds in the MODEL using an alignment of the MODEL
sequence with one or more template structures. The MODEL sequence has to be the last sequence in the
alignment, aln. The template structures are all the other proteins in the alignment. All Cys–Cys pairs
in the target sequence that are aligned with at least one template disulfide are defined as disulfide bonds
themselves. (Template disulfide bridges are assumed to exist between all pairs of Cys residues whose SG–SG
distances are less than 2.5Å. PDB annotations such as SSBOND are not used.) The covalent connectivity is
patched accordingly.

This command should be run after Model.generate topology() and before Restraints.make() to ensure
that the disulfides are restrained properly by the bond length, angle, and dihedral angle restraints and that
no SG–SG non-bonded interactions are applied.

The disulfide bond, angle and dihedral angle restraints have their own physical restraint type separate from
the other bond, angle and dihedral angle restraints (Table 6.1).

Example: examples/commands/patch disulfides.py

Example for: Model.patch_ss_templates() and Model.patch_ss()

This will patch CYS-CYS disulfide bonds using disulfides in aligned templates:

from modeller import *

log.verbose()

env = Environ()

env.io.atom_files_directory = [’.’, ’../atom_files’]

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

Read the sequence, calculate its topology, and coordinates:

aln = Alignment(env, file=’toxin.ali’, align_codes=(’2ctx’, ’2abx’))

Superpose the two template structures without changing the alignment.

This is for TRANSFER_XYZ to work properly. It relies on not reading

the atom files again before TRANSFER_XYZ.

aln.malign3d(fit=False) # This is for TRANSFER_XYZ to work properly.

Restore the alignment, and add in the model sequence, 1fas:

aln.clear()

aln.append(file=’toxin.ali’, align_codes=(’2ctx’, ’2abx’, ’1fas’))

mdl = Model(env)

mdl.generate_topology(aln[’1fas’])

mdl.transfer_xyz(aln)

mdl.build(initialize_xyz=True, build_method=’INTERNAL_COORDINATES’)

mdl.write(file=’1fas.noSS’)

Create the disulfide bonds using equivalent disulfide bonds in templates:

mdl.patch_ss_templates(aln)

Create the stereochemical restraints

sel = Selection(mdl)

mdl.restraints.make(sel, restraint_type=’stereo’, spline_on_site=False)

Calculate energy to test the disulfide restraints (bonds, angles, dihedrals):

sel.energy()

mdl.read(file=’1fas.noSS’)

Create the disulfide bonds guessing by coordinates

mdl.patch_ss()

Create the stereochemical restraints

https://salilab.org/modeller/examples/commands/patch_disulfides.py

6.6. THE MODEL CLASS: HANDLING OF ATOMIC COORDINATES, AND MODEL BUILDING 87

mdl.restraints.make(sel, restraint_type=’stereo’, spline_on_site=False)

Calculate energy to test the disulfide restraints (bonds, angles, dihedrals):

sel.energy()

6.6.24 Model.patch ss() — guess MODEL disulfides from model structure

patch ss()

This command defines and patches disulfide bonds in MODEL using MODEL’s current structure. A disulfide
bridge is declared between all pairs of Cys residues whose SG–SG distances are less than 2.5Å. The covalent
connectivity is patched accordingly.

This command should be run after Model.read() and before optimization to ensure that the disulfides are
fixed properly and that no SG–SG non-bonded interactions are applied.

Topology.submodel is needed to make sure the correct atomic radii are used in CYS–CYS patching.

Example: See Model.patch ss templates() command.

6.6.25 Model.build() — build MODEL coordinates from topology

build(build method, initialize xyz)

Requirements: topology file & parameters file & MODEL topology

This command builds Cartesian coordinates of the MODEL.

If initialize xyz is True, all coordinates are built. Otherwise only the undefined coordinates are built. The lat-
ter is useful because some coordinates may be undefined after the Model.read() or Model.transfer xyz()
command. The undefined coordinates have a value of −999. when written to a PDB file.

If build method is ’INTERNAL COORDINATES’, the Cartesian coordinates are built from the ideal values of the
internal coordinates as obtained from the IC entries in the residue topology library2 If an appropriate IC
entry does not exist, the ideal value of the internal coordinate is calculated from the corresponding energy
term in the parameter library. If some coordinates still cannot be built, the N and C mainchain atoms are
placed near a point 1/3 of the way along the vector between CA atoms in adjacent residues, if possible,
and then internal coordinate generation is tried again (this helps when using structures containing only CA
atoms). If this still fails, mainchain atoms are then ’invented’ (placed close to neighboring atoms, or near
the origin if there are no neighbors) and then internal coordinate generation is tried again (this helps to
create stereochemically correct sidechains, which would otherwise be greatly distorted). If even this fails,
any remaining atoms are ’invented’.

If build method is ’3D INTERPOLATION’, the Cartesian coordinates are built by linearly interpolating between
the two defined atoms that span the contiguous undefined segment of atoms. In this mode, both the
mainchain and sidechain conformations of all inserted residues are random and distorted. This build-up
mode is useful because it may eliminate a knot and minimize the extended nature of the insertion obtained
by build method = ’INTERNAL COORDINATES’. In the end, the coordinates of each of the interpolated atoms
are slightly randomized (±0.2Å) to prevent numerical problems with colinear angles and colinear dihedral
angles. If one or both of the spanning atoms are undefined, the ’ONE STICK’ option (below) is used.

2If no atoms in the first chain have coordinates, internal coordinate generation is seeded by placing the first atom at the origin, the
second along the x axis, and the third in the xy plane. If no atoms in subsequent chains have coordinates, the first atom is placed 2
angstroms along each of the x, y and z axes from the last atom in the previous chain, and the second and third atoms placed in the
same way as for the first chain.

88 CHAPTER 6. MODELLER COMMAND REFERENCE

If build method is ’ONE STICK’, the Cartesian coordinates are built by “growing” them linearly out of the
N-terminal spanning atom (C-terminal atom for the undefined N-terminal), away from the gravity center of
all the defined atoms. If there are no spanning atoms, the spanning atom is defined randomly.

If build method is ’TWO STICKS’, the loop is broken into two equal pieces and the ’ONE STICK’ algorithm is
applied to both halves of the loop separately.

Example: examples/commands/build model.py

Example for: Model.build()

This will build a model for a given sequence in an extended conformation.

from modeller import *

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

Read the sequence from a file (does not have to be part of an alignment):

aln = Alignment(env, file=’toxin.ali’, align_codes=’1fas’)

Calculate its molecular topology:

mdl = Model(env)

mdl.generate_topology(aln[’1fas’])

Calculate its Cartesian coordinates using internal coordinates and

parameters if necessary:

mdl.build(initialize_xyz=True, build_method=’INTERNAL_COORDINATES’)

Add PDB remarks for readability

mdl.remark = """REMARK 4 Extended-chain model of 1fas

REMARK 4 Built from internal coordinates only"""

Write the coordinates to a PDB file:

mdl.write(file=’1fas.ini’)

6.6.26 Model.transfer xyz() — copy templates’ coordinates to MODEL

transfer xyz(aln, cluster cut=-1.0, cluster method=’RMSD’, io=None)

This command transfers coordinates of the equivalent atoms and their isotropic temperature factors (Biso)
from the template structures to the model.

The target sequence must be the last protein in the alignment, aln, and has to be the same as the model
sequence. The template structures are all the other proteins in the alignment.

Before transferring coordinates, the template structures generally have to be explicitly least-squares super-
posed onto each other. This is most conveniently achieved with the Alignment.malign3d() command
called just before Model.transfer xyz(). This is an important difference relative to Modeller-3, which
did not require explicit superposition by the user. Note, however, that the AutoModel class script does this
superposition automatically if you set AutoModel.initial malign3d to True.

If cluster cut is greater than 0, the transferred coordinates and Bisoare the average of the templates in the
largest cluster of the atoms. This cluster is obtained as follows (it only works when all templates and the
target have exactly the same topology): For each residue position separately, calculate the maximal inter-
template equivalent atom–atom distances (cluster method = ’MAXIMAL DISTANCE’) or atomic Rms deviation
(cluster method = ’RMSD’) for all template–template comparisons. Use the weighted pair-group average

https://salilab.org/modeller/examples/commands/build_model.py

6.6. THE MODEL CLASS: HANDLING OF ATOMIC COORDINATES, AND MODEL BUILDING 89

clustering method (the same as in the Environ.dendrogram() command) to obtain the clustering tree
for the given residue position. Find the clusters that contain residues joined above cluster cut angstroms
(1Å is a good value). Use the largest cluster in the averaging for the target coordinates. The number
of residue positions at which each template contributes to the consensus is written to the log file (’The
largest cluster occupancy’). Sometimes the first template contributes many more times than the rest of
the templates. This results from having many residue positions where all “clusters” have one template only
(the first cluster/template is then picked by default). This artifact can be corrected by specifying a larger
cluster cut. Two additional data files are also produced: nmemb.dat contains one line for each residue in the
model, which lists the residue number, the number of clusters detected, and the number of templates in the
largest cluster. occupancy.dat lists, for each residue, the indices of the templates in the largest cluster.

If cluster cut is less than or equal to 0, the transferred coordinates and (Biso) for a given target atom are the
average of the coordinates of all the equivalent template atoms. cluster method is ignored.

Both kinds of averaging, but especially the cluster averaging, are useful for deriving a consensus model from
an ensemble of models of the same sequence. If the consensus model is optimized by the conjugate gradients
method, it frequently has a significantly lower value of the objective function than any of the contributing
models. Thus, the construction of a consensus model can also be seen as part of an efficient optimization. The
reason why consensus construction frequently results in better models is that the consensus model generally
picks the best (i.e., most frequent) conformation for the regions that are variable in the individual models,
while it is very unlikely that a single model will have optimal conformation in all of the variable regions.
The consensus construction may not work when two or more locally optimal conformations are inconsistent
with each other (e.g., because of the atom overlaps).

Two atoms are equivalent if they have exactly the same name and are in the equivalent residues. Note
that the $ATMEQV LIB library of equivalent residue–residue atom pairs, which is used in the construction of
homology-derived distance restraints, is not used here. The atom names in the target may not correspond to
the atom names in the template files. In such a case, if you want to copy the template atoms’ coordinates,
you have to edit the atom names in the template atom files so that they correspond to the Modeller atom
names (which you can see in the .ini atom file). At least for water molecules, this is usually better than
letting the optimizer deal with grossly incorrect starting positions.

Atoms which do not have an equivalent in any template are flagged on exit from this method as ’undefined’
(by setting their coordinates to −999, and their Biso to 0.0). The coordinates of the undefined atoms of the
model can be set with the Model.build() command, which relies on the internal coordinates specified in
the residue topology library or on various types of geometric interpolation and extrapolation.

Example: examples/commands/transfer xyz.py

Example for: Model.transfer_xyz()

This will build a model for a given sequence by copying

coordinates from aligned templates. When the templates

have the same sequence as the target, this procedure ensures

that the new model corresponds to the MODELLER topology library.

from modeller import *

env = Environ()

env.io.atom_files_directory = [’.’, ’../atom_files’]

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

Read the sequence and calculate its topology:

aln = Alignment(env, file=’toxin.ali’, align_codes=(’2ctx’, ’2nbt’))

aln.malign3d(fit=False)

aln.append(file=’toxin.ali’, align_codes=’1fas’)

mdl = Model(env)

mdl.generate_topology(aln[’1fas’])

https://salilab.org/modeller/examples/commands/transfer_xyz.py

90 CHAPTER 6. MODELLER COMMAND REFERENCE

Assign the average of the equivalent template coordinates to MODEL:

mdl.transfer_xyz(aln)

Get the remaining undefined coordinates from internal coordinates:

mdl.build(initialize_xyz=False, build_method=’INTERNAL_COORDINATES’)

Write the final MODEL coordinates to a PDB file:

mdl.write(file=’1fas.ini’)

6.6.27 Model.res num from() — residue numbers from MODEL2 to MODEL

res num from(mdl, aln)

This command transfers residue numbers and chain ids from mdl to the model. mdl and the current model
must correspond to the first and second protein in the alignment, aln, respectively.

Example: examples/commands/transfer res numb.py

Example for: Model.res_num_from()

This will transfer residue numbers and chain ids from model2 to model.

from modeller import *

log.level(output=1, notes=1, warnings=1, errors=1, memory=0)

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

Read an alignment for the transfer

aln = Alignment(env, file=’toxin.ali’, align_codes=(’2ctx’, ’1fas’))

Read the template and target models:

mdl2 = Model(env, file=’2ctx’)

mdl = Model(env, file=’1fas’)

Transfer the residue and chain ids and write out the new MODEL:

mdl.res_num_from(mdl2, aln)

mdl.write(file=’1fas.ini’)

6.6.28 Model.rename segments() — rename MODEL segments

rename segments(segment ids, renumber residues=[])

This assigns single character PDB chain IDs (from segment ids; there should be as many elements in seg-

ment ids as there are chains in the current MODEL). The residues in each chain are also renumbered con-
secutively, starting with the corresponding element from renumber residues if provided, or the existing first
residue number otherwise.

See also Chain.name for assigning chain IDs individually without also renumbering residues.

Example: examples/commands/rename segments.py

https://salilab.org/modeller/examples/commands/transfer_res_numb.py
https://salilab.org/modeller/examples/commands/rename_segments.py

6.6. THE MODEL CLASS: HANDLING OF ATOMIC COORDINATES, AND MODEL BUILDING 91

Example for: Model.rename_segments()

This will assign new PDB single-character chain id’s to all the chains

in the input PDB file (in this example there are two chains).

from modeller import *

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

mdl = Model(env, file=’2abx’)

Assign new segment names and write out the new model:

mdl.rename_segments(segment_ids=(’X’, ’Y’))

mdl.write(file=’2abx-renamed.pdb’)

6.6.29 Model.to iupac() — standardize certain dihedral angles

to iupac()

This routine swaps specific pairs of atoms within some residues of MODEL so that certain dihedral angles
are within ±90◦, satisfying the IUPAC convention [IUPAC-IUB, 1970,Kendrew et al., 1970]. These residues,
pairs of atoms, and dihedral angles are:

• Phe, Tyr: (CD1, CD2), (CE1, CE2); χ2;

• Asp: (OD1, OD2); χ2;

• Glu: (OE1, OE2); χ3;

• Arg: (NH1, NH2); χ4.

It is possible that for distorted sidechains, neither of the two possibilities satisfies the IUPAC convention. In
such a case, a warning message is written to the log file.

Example: examples/commands/iupac model.py

This will swap certain atom names in some planar sidechains to satisfy

the IUPAC convention.

from modeller import *

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

log.level(1, 1, 1, 1, 0)

mdl = Model(env, file=’2abx’)

mdl.to_iupac()

mdl.write(file=’2abx.iup’)

6.6.30 Model.reorder atoms() — standardize order of MODEL atoms

reorder atoms()

https://salilab.org/modeller/examples/commands/iupac_model.py

92 CHAPTER 6. MODELLER COMMAND REFERENCE

Requirements: topology library

This routine reorders atoms within the residues of MODEL so that they follow the order in the current
residue topology library.

Example: examples/commands/reorder atoms.py

Example for: Model.reorder_atoms()

This will standardize the order of atoms in the model.

from modeller import *

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

Order the atoms according to a topology library:

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

mdl = Model(env, file=’1fas’)

mdl.reorder_atoms()

mdl.write(file=’1fas.ini1’)

6.6.31 Model.orient() — center and orient MODEL

orient()

Output: OrientData object

This command translates the MODEL so that its gravity center is at the origin of the coordinate system
and that the three principal axes of the model’s inertia ellipsoid correspond to the x, y, and z axes of the
coordinate system. It may even be used for approximate superposition if molecules have a similar non-
spherical shape. Information about the principal axes is written to the log file.

On successful completion, an OrientData object is returned; for instance, if you save this in a variable ’r’, the
following data are available:

• r.translation; the translation used to transform mdl to the center of mass

• r.rotation; the rotation matrix used to transform mdl (applied after the translation)

Example: examples/commands/orient model.py

Example for: Model.orient()

This will orient the model along the principal axes of the inertia ellipsoid:

from modeller import *

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

mdl = Model(env)

mdl.read(file=’1fas’)

r = mdl.orient()

mdl.write(file=’1fas.ini’)

print("Translation: " + str(r.translation))

https://salilab.org/modeller/examples/commands/reorder_atoms.py
https://salilab.org/modeller/examples/commands/orient_model.py

6.6. THE MODEL CLASS: HANDLING OF ATOMIC COORDINATES, AND MODEL BUILDING 93

6.6.32 Model.write data() — write derivative model data

write data(output, file=None, surftyp=1, neighbor cutoff=6.0, accessibility type=8,

probe radius=1.4, psa integration step=0.1, dnr accpt lib=’$LIB/donor acceptor.lib’, edat=None)

Requirements: topology file

This command calculates and writes out the selected type(s) of data (from the list below) about the model.
If file is specified and is non-empty, each property is written out to a file using file as the root of the file name.
The last such property is also assigned to the Biso field of each atom of the model (in the case of residue
properties, each atom in the residue gets the value of the property). This can be accessed as Atom.biso, or
written out with Model.write() to a PDB file, where it appears as the temperature factor.

The data to be calculated are specified by concatenating the corresponding keywords in the output variable:

• ’ALL’: All types of data are written.

• ’PSA’: The atomic and residue solvent accessibilities are written to .sol and .psa files, respectively. The
algorithm for the solvent contact areas is described in [Richmond & Richards, 1978], and can be tuned
by changing the probe radius and psa integration step parameters. The normalization for the fractional
areas is carried out as described in [Hubbard & Blundell, 1987], with the normalization factors courtesy
of Simon Hubbard (personal communication)3. The single reference is Šali & Overington, 1994. Accessi-
bilities are calculated with scaled radii from the $MODELS LIB library, as specified by Topology.submodel.
The radii are scaled by EnergyData.radii factor, which should usually be set to 1. If output also contains
ATOMIC SOL, atomic accessibilities in Å2 are assigned to Biso, otherwise residue accessibility of type
accessibility type (from 1 to 10, for the columns in the .psa file) is assigned. (In either case, atomic
accessibilities in Atom.accessibility are updated.) If surftyp is 1, contact accessibility is calculated; if 2,
surface accessibility is returned. Atoms with undefined coordinates are assigned zero accessibility.

• ’NGH’: Residue neighbors of each residue are listed to a .ngh file. The Modeller definition of a
residue–residue contact used in restraints derivation is applied [Šali & Blundell, 1993]: Any pair of
residues that has any pair of atoms within neighbor cutoff Å of each other are in contact. The number
of neighbors for each residue is assigned to Biso.

• ’DIH’: All the dihedral angle types defined in the $RESDIH LIB library (mainchain, sidechain, and the
virtual dihedral between four successive Cα atoms, starting with the previous residue) are written to a
.dih file. One column from this file, as selected by accessibility type, is also assigned to Biso.

• ’SSM’: Secondary structure assignments are written to a .ssm file, and also to Biso (0 for unknown, 1 for
strand, 2 for helix, and -2 for kink). The algorithm for secondary structure assignment depends on the
Cα positions only and is based on the distance matrix idea described in [Richards & Kundrot, 1988].
For each secondary structure type, a ‘library’ Cα distance matrix was calculated by averaging distance
matrices for several secondary structure segments from a few high resolution protein structures. Program
Dssp was used to assign these secondary structure segments [Kabsch & Sander, 1983]. Outlier distances
were omitted from the averaging. Currently, there are only two matrices: one for the α-helix and one
for the β-strand. The algorithm for secondary structure assignment is as follows:

1. For each secondary structure type (begin with a helix, which can thus overwrite parts of strand if
they overlap):

– Define the degree of the current secondary structure fit for each Cα atom by Drms deviation
(P1) and maximal distance difference (P2) obtained by comparing the library distance matrix
with the distance matrix for a segment starting at the given Cα position;

– Assign the current secondary structure type to all Cα’s in all segments whose Drms deviation
and maximal distance difference are less than some cutoffs (P1 < cut1, P1 < cut2) and are not
already assigned to ‘earlier’ secondary structure types;

3 Fractional surface area of a residue X is given as the calculated surface area divided by that of the residue in an extended tripeptide
Ala-X-Ala conformation.

94 CHAPTER 6. MODELLER COMMAND REFERENCE

2. Split kinked contiguous segments of the same type into separate segments:
Kinking residues have both DRMS and maximal distance difference beyond their respective cutoffs
(P1 > cut3, P2 > cut4). The actual single kink residue separating the two new segments of the
same type is the central kinking residue. Note: we are assuming that there are no multiple kinks
within one contiguous segment of residues of the same secondary structure type.

3. If the current secondary structure type is β-strand: Eliminate those runs of strand residues that are
not close enough to other strand residues separated by at least two other residues: P3 is minimal
distance to a non-neighboring residue of the strand type (P3 < cut3). Currently, only one pass of
this elimination is done, but could be repeated until self-consistency.

4. Eliminate those segments that are shorter than the cutoff (cut6) length (e.g., 5 or 6).

5. Remove the isolated kinking residues (those that occur on their own or begin or end a segment).

• ’CRV’: Local mainchain curvatures, multiplied by 0.1, are assigned to the Biso field. Local mainchain
curvature at residue i is defined as the angle (expressed in degrees, between 0 and 180) between the
least-squares lines through Cα atoms i− 3 to i and i to i+ 3.

• ’HBONDS’: Hydrogen bonds between amino acid residues are written to a .hbnds file. A list of donors
and acceptors in the 20 naturally occurring amino acids, specified by dnr accpt lib, is utilized in the
computation of H-bonds. Hydrogen bonds are reported if the donor - acceptor distance is between 2.5
and 3.5Å and the donor-acceptor-acceptor antecedent angle is larger than 120 degrees. The model’s
Biso field is not changed by this property.

Example: examples/commands/write data.py

Example for: Model.write_data()

This will calculate solvent accessibility, dihedral angles,

residue-residue neighbors, secondary structure, and local mainchain

curvature for a structure in the PDB file.

from modeller import *

log.verbose()

Get topology library for radii and the model without waters and HETATMs:

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

env.io.hetatm = False

env.io.water = False

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

mdl = Model(env, file=’1fas’)

Calculate residue solvent accessibilities, dihedral angles,

residue neighbors, and secondary structure, and write to files:

myedat = EnergyData()

myedat.radii_factor = 1.0 # The default is 0.82 (for soft-sphere restraints)

mdl.write_data(file=’1fas’, edat=myedat, output=’PSA DIH NGH SSM’)

Calculate local mainchain curvature

mdl.write_data(output=’CRV’)

Use the calculated curvature data (in Biso)

print("The following residues have local mainchain curvature")

print("greater than 90 degrees:")

print([r for r in mdl.residues if r.atoms[0].biso * 10 > 90.0])

https://salilab.org/modeller/examples/commands/write_data.py

6.6. THE MODEL CLASS: HANDLING OF ATOMIC COORDINATES, AND MODEL BUILDING 95

6.6.33 Model.make region() — define a random surface patch of atoms

make region(atom accessibility=1.0, region size=20)

This command defines a contiguous patch of exposed atoms of region size. First, the exposed atoms in
the model are identified by using the atom accessibility cutoff (in Å2) (you must first assign accessibilities
to every atom’s Biso field, either by calling Model.write data() with ’PSA ATOMIC SOL’ output, or by
manually assigning to Atom.biso). The seed atom is picked randomly among the exposed atoms. The patch
is expanded by iteratively adding the exposed atom that is closest to the gravity center of the currently
selected patch atoms. Thus, the patch is defined deterministically once the seed atom is picked. The patch is
defined by setting the Biso field of the model to 1 for the patch atoms and to 0 for the remaining atoms. (If
you write out the model as a PDB file with Model.write(), this appears as the PDB temperature factor.
The “temperature” color option of your PDB viewer can be used to display the patch graphically.)

To obtain surface patches that look good in visual inspection, it is necessary to use a non-obvious scaling
factor for atomic radii and probe radius for solvent calculation by Model.write data(), as well as the
accessibility cutoff for Model.make region().

Example: examples/commands/make region.py

Example for: Model.make_region()

This will define a random contiguous patch of atoms on a surface of the

protein.

from modeller import *

env = Environ(rand_seed=-18343)

log.level(1, 1, 1, 1, 0)

Read the PDB file

mdl = Model(env)

mdl.read(file=’../atom_files/pdb1fdn.ent’)

Calculate atomic accessibilities (in Biso) with appropriate probe_radius

myedat = EnergyData()

myedat.radii_factor = 1.6

mdl.write_data(edat=myedat, output=’PSA ATOMIC_SOL’,

psa_integration_step=0.05, probe_radius=0.1)

Get the "random" patch of exposed atoms on the surface

mdl.make_region(atom_accessibility=0.5, region_size=35)

Write out a PDB file with the patch indicated by Biso = 1:

mdl.write(file=’1fdn.reg’)

Can also select the patch residues and use selection methods:

s = Selection([a for a in mdl.atoms if a.biso > 0.99])

print("%d atoms in surface patch" % len(s))

6.6.34 Model.color() — color MODEL according to alignment

color(aln)

https://salilab.org/modeller/examples/commands/make_region.py

96 CHAPTER 6. MODELLER COMMAND REFERENCE

This command ‘colors’ the model according to a given alignment, aln, between the model and a sequence.
The model has to be the first protein in the alignment. The second protein can be any sequence, with or
without known structure.

The coloring is done by setting the Biso (isotropic temperature factor) field in the model as follows:

• 0, for those regions that have residues in both MODEL and the sequence (blue in Rasmol; light green
in Quanta);

• 1, for the two residues that span regions occurring in the sequence but not in MODEL (green inRasmol;
pink in Quanta);

• 2, regions that occur in MODEL but are deleted from the sequence (red in Rasmol; bright green in
Quanta).

The model can then be written out with Model.write() as a PDB file, and colored using your PDB viewer
based on the temperature factors. You can then inspect the model for the structural context of deletions
and insertions. This is useful in optimizing the alignment for comparative modeling.

Example: examples/commands/color aln model.py

Example for: Model.color()

Two demos:

#

1) Use a given alignment to color a structure according to

insertions and deletions in a pairwise alignment.

#

2) Superpose two 3D structure and do (1).

from modeller import *

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

Demo 1:

mdl = Model(env)

aln = Alignment(env)

mdl.read(file=’2nbt’, model_segment=(’FIRST:A’, ’LAST:A’))

aln.append(file=’toxin.ali’, align_codes=(’2nbt’, ’1fas’), remove_gaps=True)

mdl.color(aln)

mdl.write(file=’2nbt-1.clr’)

Demo 2:

aln = Alignment(env)

segs = {’2nbt’:(’1:A’, ’66:A’), ’1fas’:(’1:A’, ’61:A’)}

for code in (’2nbt’, ’1fas’):

mdl.read(file=code, model_segment=segs[code])

aln.append_model(mdl, align_codes=code, atom_files=code)

aln.align(gap_penalties_1d=(-600, -400))

aln.malign3d(gap_penalties_3d=(0, 3.0))

aln.write(file=’color_aln_model.pap’, alignment_format=’PAP’)

mdl.read(file=’2nbt’, model_segment=segs[’2nbt’])

mdl.color(aln)

mdl.write(file=’2nbt-2.clr’)

https://salilab.org/modeller/examples/commands/color_aln_model.py

6.6. THE MODEL CLASS: HANDLING OF ATOMIC COORDINATES, AND MODEL BUILDING 97

6.6.35 Model.make chains() — Fetch sequences from PDB file

make chains(file, structure types=’structure’, minimal resolution=99.0, minimal chain length=30,

max nonstdres=10, chop nonstd termini=True, minimal stdres=30, alignment format=’PIR’)

This command is obsolete. Please see Chain.filter() and Chain.write() instead.

This command fetches the sequences of the various chains found in the PDB file that has been read into
memory (see Model.read()).

The sequence of every chain that matches the input criteria is written out to separate files. SeeChain.filter()
for a description of the input criteria, and Chain.write() for a description of the parameters controlling the
output of the chain files.

6.6.36 Model.saxs intens() — Calculate SAXS intensity from model

saxs intens(saxsd, filename, fitflag=False)

Calculate SAXS intensity from model. See Section 6.29.

6.6.37 Model.saxs pr() — Calculate P (r) of model

saxs pr(saxsd, filename)

Calculate P(r) from model. See Section 6.29.

6.6.38 Model.saxs chifun() — Calculate SAXS score chi from model

saxs chifun(transfer is, edat=None)

Calculate SAXS score from model. See Section 6.29.

6.6.39 Model.assess ga341() — assess a model with the GA341 method

assess ga341()

Output: (score, compactness, e native pair, e native surf, e native comb, z pair, z surf, z comb)

This command assesses the quality of the model using the GA341 method method [Melo et al., 2002,
John & Šali, 2003]. The method uses the percentage sequence identity between the template and the model
as a parameter. Modeller-produced PDB files contain this information in a ’REMARK’; in the case of other
PDB files, you should supply this by setting Model.seq id.

If the model contains multiple chains, only the first is evaluated by this method; if you wish to evaluate the
model in a different chain, you should write out that single chain into a new model first. (The method was
parameterized for use with single-chain proteins, so its use for multi-chain models is not recommended.)

Only standard amino acids are assessed by this command. A ModellerErrorexception will be raised if the
model contains no standard amino acids.

When using AutoModel or LoopModel, automatic GA341 assessment of each model can be requested by
adding assess.GA341 to AutoModel.assess methods or LoopModel.loop.assess methods respectively.

Example: examples/assessment/assess ga341.py

https://salilab.org/modeller/examples/assessment/assess_ga341.py

98 CHAPTER 6. MODELLER COMMAND REFERENCE

Example for: Model.assess_ga341()

from modeller import *

from modeller.scripts import complete_pdb

env = Environ()

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

Read a model previously generated by Modeller’s AutoModel class

mdl = complete_pdb(env, ’../atom_files/1fdx.B99990001.pdb’)

Set template-model sequence identity. (Not needed in this case, since

this is written by Modeller into the .pdb file.)

mdl.seq_id = 37.037

score = mdl.assess_ga341()

6.6.40 Model.assess normalized dope() — assess a model with the normalized
DOPE method

assess normalized dope()

Output: Z-score

This command assesses the quality of the model using the normalized DOPE method. This is a Z-score;
positive scores are likely to be poor models, while scores lower than -1 or so are likely to be native-like.

The normalized DOPE score is derived from the statistics of raw DOPE scores4. See
Selection.assess dope() for more information on these raw scores.

When using AutoModel or LoopModel, automatic normalized DOPE assessment of each model can be re-
quested by adding assess.normalized dope to AutoModel.assess methods or LoopModel.loop.assess methods

respectively.

Example: examples/assessment/assess normalized dope.py

Example for: Model.assess_normalized_dope()

from modeller import *

from modeller.scripts import complete_pdb

env = Environ()

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

Read a model previously generated by Modeller’s AutoModel class

mdl = complete_pdb(env, ’../atom_files/1fdx.B99990001.pdb’)

zscore = mdl.assess_normalized_dope()

4The mean and standard deviation of the DOPE score of a given protein is estimated from its sequence. The mean score of a random
protein conformation is estimated by a weighted sum of protein composition over the 20 standard amino acid residue types, where each
weight corresponds to the expected change in the score by inserting a specific type of amino acid residue. The weights are estimated
from a separate training set of 1,686,320 models generated by MODPIPE.

https://salilab.org/modeller/examples/assessment/assess_normalized_dope.py

6.6. THE MODEL CLASS: HANDLING OF ATOMIC COORDINATES, AND MODEL BUILDING 99

6.6.41 Model.get normalized dope profile() — get per-residue normalized DOPE
profile

get normalized dope profile()

Output: EnergyProfile

This returns the individual residue components of the normalized DOPE score, which can be used to detect
poor regions of the model. See Model.assess normalized dope() for more details on normalized DOPE,
and Section 6.25 for more details on the returned profile.

100 CHAPTER 6. MODELLER COMMAND REFERENCE

6.7 The Restraints class: static restraints

The Restraints class holds all of the static restraints which act on a model, and methods to manipulate them. It
is never created manually, but can be accessed from the Model that the restraints act on, as Model.restraints.

6.7.1 Restraints.rigid bodies — all rigid bodies

This is a list of all rigid bodies in the model. See section 5.3.4 for more information.

6.7.2 Restraints.pseudo atoms — all pseudo atoms

This is a list of all pseudo atoms in the model. See section 5.3.2 for more information. Note that the list
can only be appended to, and not reordered or deleted; this is to prevent restraints defined on the pseudo
atoms from becoming invalidated. (You can call Restraints.clear() to delete all restraints, including pseudo
atoms, and start again if you need to delete pseudo atoms.)

Example: See Section 5.3.2 command.

6.7.3 Restraints.excluded pairs — all excluded pairs

This is a list of all excluded pairs in the model. See section 5.3.3 for more information.

6.7.4 Restraints.nonbonded pairs — all nonbonded pairs

This is a list of all nonbonded pairs in the model; right now while the length of the list can be obtained,
the actual pairs themselves cannot be. It is read-only; the list is populated automatically when the model’s
score is calculated, e.g. by Selection.energy().

6.7.5 Restraints.symmetry — all symmetry restraints

This is a list of all symmetry restraints on the model. See section 5.3.5 for more information.

6.7.6 Restraints.symmetry.report() — report violated symmetry restraints

report(deviation)

This writes a comparison of equivalent distances involved in the definition of the symmetry enforcing term
to the log file. All distances greater than deviation are reported. See Section 5.3.5 for an example.

6.7.7 Restraints.make() — make restraints

make(atmsel, restraint type, spline on site, residue span range=(0, 99999),

residue span sign=True, restraint sel atoms=1, basis pdf weight=’LOCAL’,

basis relative weight=0.05, intersegment=True, dih lib only=False, spline dx=0.5,

spline min points=5, spline range=4.0, mnch lib=1, accessibility type=8, surftyp=1, distngh=6.0,

aln=None, edat=None, io=None)

Requirements: topology & parameters

This command calculates and selects new restraints of a specified type. See the original papers for the most
detailed definition and description of the restraints [Šali & Blundell, 1993, Šali & Overington, 1994]. The

6.7. THE RESTRAINTS CLASS: STATIC RESTRAINTS 101

calculation of restraints of all types is now (partly) limited to the atoms in the atom selection atmsel. The
new restraints are added to any currently present.

The physical restraint type of the new restraints is specified by restraint group, and should be an object from
the physical module (see Table 6.1).

restraint type selects the types of the generated restraints. (For restraint type DISTANCE, do not use this
command; instead, use Restraints.make distance().) Only one restraint type can be selected at a time,
except for the stereochemical restraints (BOND, ANGLE, DIHEDRAL, IMPROPER) that can all be calculated at the
same time. It is useful to distinguish between the stereochemical restraints and homology-derived restraints.
The stereochemical restraints are obtained from libraries that depend on atom and/or residue types only (e.g.,
Charmm 22 force field [MacKerell et al., 1998] or statistical potentials), and do not require the alignment
aln with template structures. In contrast, the homology-derived restraints are calculated from related protein
structures, which correspond to all but the last sequence in the alignment aln (the target). These templates
are read from coordinate files, which are the only data files required. All restraints are added to the existing
restraints, even if they duplicate them (but see the comment for the ’OMEGA’ restraints below).

The atoms for non-bonded restraints also have to be within the residue spanning range specified by
residue span range = (r1, r2), such that the residue index difference r1 ≤ |ir2 − ir1| ≤ r2 when
residue span sign = False and r1 ≤ (ir2− ir1) ≤ r2 when residue span sign = True.

Stereochemical restraints:

• ’BOND’. This calculates covalent bond restraints (harmonic terms). It relies on the list of the atom–atom
bonds for MODEL, prepared previously by the Model.generate topology() command. The mean
values and force constants are obtained from the parameter library in memory. Only those bonds are
restrained that have all or at least restraint sel atoms in the selection atmsel.

• ’ANGLE’. This calculates covalent angle restraints (harmonic terms). It relies on the list of the atom–
atom–atom bonds for MODEL, prepared previously by the Model.generate topology() command.
The mean values and force constants are obtained from the parameter library in memory. Only those
angles are restrained that have all or at least restraint sel atoms in the selection atmsel.

• ’DIHEDRAL’. This calculates covalent dihedral angle restraints (cosine terms). It relies on
the list of the atom–atom–atom–atom dihedral angles for MODEL, prepared previously by the
Model.generate topology() command. The minima, phases, and force constants are obtained from
the parameter library in memory. Only those dihedral angles are restrained that have all or at least
restraint sel atoms in the selection atmsel.

• ’IMPROPER’. This calculates improper dihedral angle restraints (harmonic terms). It relies on the list of
the improper dihedral angles for MODEL, prepared previously by the Model.generate topology()
command. The mean values and force constants are obtained from the parameter library in memory.
Only those impropers are restrained that have all or at least restraint sel atoms in the selection atmsel.

• ’STEREO’. This implies all ’BOND’, ’ANGLE’, ’DIHEDRAL’, and ’IMPROPER’ restraints.

• ’SPHERE14’. This constructs soft-sphere overlap restraints (lower harmonic bounds) for atom pairs
separated by exactly three bonds (1–4 pairs). It relies on atom radii from the ’$RADII14 LIB’ library.
Only those non-bonded pairs are restrained that have all or at least EnergyData.nonbonded sel atoms in
the selection atmsel. They must also satisfy the residue span range & residue span sign criterion.

• ’LJ14’. This constructs 1–4 Lennard-Jones restraints using the modified 1–4 Lennard-Jones parameters
from the Charmm parameter library. There is no way to calculate ’LJ14’ as dynamic restraints. Only
those non-bonded pairs are restrained that have all or at least EnergyData.nonbonded sel atoms in the
selection atmsel. They must also satisfy the residue span range & residue span sign criterion.

• ’COULOMB14’. This constructs 1–4 Coulomb restraints by relying on the atomic charges from the
Charmm topology library. There is no way to calculate ’COULOMB14’ as dynamic restraints. Only
those non-bonded pairs are restrained that have all or at least EnergyData.nonbonded sel atoms in the
selection atmsel. They must also satisfy the residue span range & residue span sign criterion.

• ’SPHERE’. This constructs soft-sphere overlap restraints (lower harmonic bounds) for all atom pairs
that are not in bonds, angles, dihedral angles, improper dihedral angles, nor are explicitly excluded by
the ’E’ entries read from a restraint file or added by the Restraints.add() command. Only those non-
bonded pairs are restrained that have all or at least EnergyData.nonbonded sel atoms in the selection

102 CHAPTER 6. MODELLER COMMAND REFERENCE

atmsel. They must also satisfy the residue span range & residue span sign criterion. Note that this makes
these restraints static (i.e., not dynamic) and that you must set EnergyData.dynamic sphere to False

before evaluating the molecular pdf if you want to avoid duplicated restraints. These restraints should
usually not be combined with the Lennard-Jones (’LJ’) restraints.

When intersegment is True, the inter-segment non-bonded restraints are also constructed; otherwise,
the segments do not feel each other via the non-bonded restraints. This option does not apply to the
optimizers (Section 6.11) where information about segments is not used at all (i.e., they behave as if
intersegment = True).

• ’LJ’. This constructs Lennard-Jones restraints for all atom pairs that are not in bonds, angles, dihedral
angles, improper dihedral angles, nor are explicitly excluded by the ’E’ entries read from a restraint
file or added by the Restraints.add() command. Only those non-bonded pairs are restrained that
have all or at least EnergyData.nonbonded sel atoms in the selection atmsel. They must also satisfy
the residue span range & residue span sign criterion. Note that this command makes the non-bonded
restraints static (i.e., not dynamic) and that you must set EnergyData.dynamic lennard to False before
evaluating the molecular pdf if you want to avoid duplicated restraints. Note that Charmm uses both
’LJ14’ and ’LJ’. For large molecules, it is better to calculate ’LJ’ as dynamic restraints because you
can use distance cutoff EnergyData.contact shell in optimization (Section 6.11) to reduce significantly
the number of non-bonded atom pairs.

• ’COULOMB’. This constructs Coulomb restraints for all atom pairs that are not in bonds, angles, dihedral
angles, improper dihedral angles, nor are explicitly excluded by the ’E’ entries read from a restraint
file or added by the Restraints.add() command. Only those non-bonded pairs are restrained that
have all or at least EnergyData.nonbonded sel atoms in the selection atmsel. They must also satisfy
the residue span range & residue span sign criterion. Note that this command makes the non-bonded
restraints static (i.e., not dynamic) and that you must set EnergyData.dynamic coulomb to False before
evaluating the molecular pdf if you want to avoid duplicated restraints. Note that Charmm uses
both ’COULOMB14’ and ’COULOMB’. For large molecules, it is better to calculate ’COULOMB’ as dynamic
restraints because you can use distance cutoff EnergyData.contact shell in optimization (Section 6.11)
to reduce significantly the number of non-bonded atom pairs.

Homology-derived restraints:

For these restraints, the input alignment aln must be given.

• ’CHI1 DIHEDRAL’, ’CHI2 DIHEDRAL’, ’CHI3 DIHEDRAL’, ’CHI4 DIHEDRAL’, ’PHI DIHEDRAL’,
’PSI DIHEDRAL’, ’OMEGA DIHEDRAL’, ’PHI-PSI BINORMAL’ are the mainchain and sidechain di-
hedral angle restraints. Only those dihedral angles are restrained that have all or at least
EnergyData.nonbonded sel atoms in the selection atmsel. The means and standard deviations for
the dihedral Gaussian restraints are obtained from the $RESDIH LIB and $MNCH? LIB libraries and
their weights from the MDT tables, which are read in as specified by MDT LIB in $LIB/libs.lib. The
large MDT tables give the conditional weights for each possible dihedral angle class, as a function of
all possible combinations of features on which a particular class depends. If dih lib only is True or
there is no equivalent residue in any of the templates, the weights for the dihedral angle classes depend
only on the residue type and are obtained from the ’$RESDIH LIB’ and ’$MNCH? LIB’ libraries; the
dih lib only argument allows one to force the calculation of the “homology-derived” mainchain and
sidechain dihedral angle restraints that ignore template information. basis pdf weight has the same
effect as for the distance pdf’s.

When Modeller’s ’OMEGA’ restraints are calculated, the currently existing restraints on atoms ’O C

+N +CA’ in all residues are automatically deleted. These deleted restraints correspond to the improper

dihedral angles involving the ω atoms. They are deleted because they could be “frustrated” by the new
’OMEGA’ restraints. No action is taken with regard to any of the previously existing, possibly duplicated
dihedral angle restraints. Thus, to avoid restraint duplication, including that of the ’OMEGA’ restraints,
call the Restraints.unpick redundant() command after all the restraints are calculated.

Dihedral restraints are only calculated for the 20 standard amino acids, plus the two alternate histidine
protonation states (HSE and HSP). The statistics for HIS are applied to HSE and HSP.

The weights of basis pdf’s depend on local sequence similarity between the target and the templates when
basis pdf weight = ’LOCAL’ and on global sequence identity when basis pdf weight = ’GLOBAL’.

6.7. THE RESTRAINTS CLASS: STATIC RESTRAINTS 103

basis relative weight is the cutoff for removing weak basis pdf’s from poly-Gaussian feature pdf’s: a basis pdf
whose weight is less than the basis relative weight fraction of the largest weight is deleted.

If spline on site is True, then certain dihedral restraints are automatically replaced by splines for efficiency.
See Restraints.spline() for a description of the spline dx, spline min points, and spline range parameters.

Several restraint types look up information from pre-calculatedMdt tables, and for these the accessibility type

variable defines the type of solvent accessibility.

Example: examples/commands/make restraints.py

Example for: restraints.make(), restraints.spline(), restraints.write()

This will compare energies of bond length restraints expressed

by harmonic potential and by cubic spline.

from modeller import *

from modeller.scripts import complete_pdb

log.verbose()

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

code = ’1fas’

mdl = complete_pdb(env, code)

mdl.write(file=code+’.ini’)

sel = Selection(mdl)

mdl.restraints.make(sel, restraint_type=’bond’, spline_on_site=False)

mdl.restraints.write(file=code+’-1.rsr’)

edat = EnergyData(dynamic_sphere=False)

sel.energy(edat=edat)

mdl.restraints.spline(forms.Gaussian, features.Distance, physical.bond,

spline_range=5.0, spline_dx=0.005, edat=edat)

mdl.restraints.condense()

mdl.restraints.write(file=code+’-2.rsr’)

sel.energy(edat=edat)

6.7.8 Restraints.make distance() — make distance restraints

make distance(atmsel1, atmsel2, aln, spline on site, restraint group, maximal distance,

residue span range=(0, 99999), residue span sign=True, distance rsr model=1,

basis pdf weight=’LOCAL’, basis relative weight=0.05, spline dx=0.5, spline min points=5,

spline range=4.0, accessibility type=8, restraint stdev=(0.1, 1.0), restraint stdev2=(0.0, 0.0,

0.0), surftyp=1, distngh=6.0, edat=None, io=None, exclude distance=0.0)

Requirements: topology & parameters

This command calculates and selects new distance restraints. See Restraints.make() for full details.

Distance restraints are generated for all pairs of atoms i, j where atom i is from selection atmsel1 and atom
j is from selection atmsel2. Moreover, for a restraint to be created, at least one distance in the template

https://salilab.org/modeller/examples/commands/make_restraints.py

104 CHAPTER 6. MODELLER COMMAND REFERENCE

structures must be less than maximal distance (in Å). The mean of this basis pdf is equal to the template
distance and its standard deviation σ is calculated from an analytic model specified by distance rsr model.
Use model 5 for Cα–Cα distances and model 6 for N–O distances. For models 1 through 6, this standard
deviation is transformed by σ′ = a + b ∗ (σ + Wg) where a and b are given by restraint stdev and Wg is
a gap weighting function of the form Wg = 0.6 ∗ max(0, 4 − gav). gav is the average distance of the two
residues involved in the restraint from a gap. For models 3 through 6, this is additionally transformed by
σ′′ = σ′ +

∑

i[d+ e ∗max(0, f − gi)] where the sum is over each of the atoms i involved in the distance, d e
and f are given by restraint stdev2, and gi is the distance of each residue from a gap. The first six models are
polynomials and depend on several structural features of the template and its similarity to the target. The
polynomial coefficients are specified in library file ’$PARAMS LIB’. When “polynomial model” 7 is selected,
the standard deviation of restraints is set to constant a. Each basis pdf in the distance pdf corresponds to
one template structure with an equivalent distance.

In addition, the atom pairs restrained by homology-derived restraints must by default not be in a chemical
bond, chemical angle, dihedral angle, or on an excluded pairs list. This behavior can be changed by resetting
EnergyData.excl local (see ConjugateGradients()).

If the restrained distance for a given atom pair is less than exclude distance, that pair is also excluded from
the nonbonded list. This is useful if you are building short distance restraints to approximate bonds.

An ’equivalent’ distance is defined as the distance between a pair of equivalent atoms. See
Atom.get equivalent atom() for the rules for determining equivalency.

6.7.9 Restraints.unpick all() — unselect all restraints

unpick all()

This unselects all of the current restraints.

6.7.10 Restraints.clear() — delete all restraints

clear()

This deletes all of the current restraints, including pseudo atoms, excluded pairs, rigid bodies, and symmetry
restraints.

6.7.11 Restraints.pick() — pick restraints for selected atoms

pick(atmsel, residue span range=(0, 99999), restraint sel atoms=1, restraints filter=physical.Values(default=-999.000000))

This command selects some or all of the restraints currently in memory.

The selection is added to any existing selected restraints; if instead you want to select only these restraints,
call Restraints.unpick all() first.

This command runs over all restraints in memory, including the currently unselected restraints. Be careful
about this: If you have some unselected restraints in memory, Restraints.pick() may select them; if you
wish to prevent this, do Restraints.remove unpicked() before calling Restraints.pick().

A static restraint is selected if all or at least restraint sel atoms of its atoms are within the atom selection
atmsel, if it is strong enough based on its standard deviations or force constants (see the next paragraph), and
if it does not span fewer residues than residue span range[0], or more than residue span range[1]. (Restraints
which act on only a single atom are not subject to this range check.) Note that here restraint sel atoms is
used for all restraints, while the Restraints.make() command and optimizers (Section 6.11) use it for all
restraint types except non-bonded pairs. (EnergyData.nonbonded sel atoms is used for non-bonded pairs by
these routines.)

6.7. THE RESTRAINTS CLASS: STATIC RESTRAINTS 105

To decide if a restraint is strong enough, the current standard deviations or force constants are compared with
the corresponding restraints filter[physical restraint type]. A harmonic restraint, lower and upper bounds, and
multi-modal Gaussian restraints are selected if the (smallest) standard deviation is less than the correspond-
ing restraints filter[i]. The cosine energy term is selected if its force constant is larger than the corresponding
restraints filter[i]. Restraints with other mathematical forms (including user-defined forms) are always se-
lected, as is any restraint of physical type i if restraints filter[i] = −999. The restraints filter angles have to
be specified in radians.

Example: examples/commands/pick restraints.py

Example for: restraints.pick(), restraints.condense()

This will pick only restraints that include at least one

mainchain (CA, N, C, O) atom and write them to a file.

from modeller import *

from modeller.scripts import complete_pdb

log.verbose()

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

mdl = complete_pdb(env, ’1fas’)

allsel = Selection(mdl)

mdl.restraints.make(allsel, restraint_type=’stereo’, spline_on_site=False)

allsel.energy()

atmsel = allsel.only_atom_types(’CA N C O’)

mdl.restraints.pick(atmsel, restraint_sel_atoms=1)

Delete the unselected restraints from memory:

mdl.restraints.condense()

atmsel.energy()

mdl.restraints.write(file=’1fas.rsr’)

6.7.12 Restraints.unpick redundant() — unselect redundant restraints

unpick redundant()

This unselects those cosine dihedral angle restraints (restraint type = ’DIHEDRAL’) that operate on the same
atoms as any other restraints on a dihedral angle or a pair of dihedral angles. Such restraints include the
Modeller ’PHI DIHEDRAL’, ’PSI DIHEDRAL’, ’OMEGA DIHEDRAL’, ’CHI1 DIHEDRAL’, ’CHI2 DIHEDRAL’,
’CHI3 DIHEDRAL’, ’CHI4 DIHEDRAL’, ’PHI PSI CLASS’, ’MRFP DIHEDRAL’, and ’PHI PSI BINORMAL’ dihe-
dral angle restraints, as well as the 2nd, 3rd, etc. cosine dihedral angle restraints on the same atoms; the
improper dihedral angle restraints are not considered here. For this command to work properly, the cosine
dihedral angle restraints must be constructed before any other dihedral angle restraints. This functionality
is needed because some of the Charmm cosine terms are sometimes duplicated by other Charmm cosine
terms as well as by Modeller homology-derived mainchain and sidechain dihedral and bi-dihedral angle
restraints. When using the standard AutoModel class, the redundant Charmm terms are always removed.
See also Restraints.condense().

https://salilab.org/modeller/examples/commands/pick_restraints.py

106 CHAPTER 6. MODELLER COMMAND REFERENCE

6.7.13 Restraints.remove unpicked() — remove unselected restraints

remove unpicked()

This command permanently removes all the unselected restraints from memory. See also
Restraints.condense().

6.7.14 Restraints.condense() — remove unselected or redundant restraints

condense()

This command permanently removes all the unselected or redundant restraints from memory. This is exactly
the same as calling Restraints.unpick redundant() followed by Restraints.remove unpicked().

Example: See Model.read() command.

6.7.15 Restraints.add() — add restraint

add(*args)

This command adds one or more restraints to the end of the restraints list and selects them. It should be
given one or more arguments, which are the restraints to add. These are mathematical form objects, as
described in Section 5.3.1, or secondary structure objects, as described in Section 6.8.

This command is also useful for specifying cis-peptide bonds from your own scripts, using the cispeptide()
command.

Example: examples/commands/add restraint.py

Example for: restraints.add(), restraints.unpick()

This will enforce cis conformation for Pro-56.

Make a model and stereochemical restraints:

from modeller import *

from modeller.scripts import complete_pdb, cispeptide

log.level(output=1, notes=1, warnings=1, errors=1, memory=0)

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

code = ’1fas’

mdl = complete_pdb(env, code)

rsr = mdl.restraints

atmsel = Selection(mdl)

rsr.make(atmsel, restraint_type=’stereo’, spline_on_site=False)

Change the Pro-56 restraint from trans to cis:

a = mdl.chains[0].atoms

cispeptide(rsr, atom_ids1=(a[’O:56’], a[’C:56’], a[’N:57’], a[’CA:57’]),

https://salilab.org/modeller/examples/commands/add_restraint.py

6.7. THE RESTRAINTS CLASS: STATIC RESTRAINTS 107

atom_ids2=(a[’CA:56’], a[’C:56’], a[’N:57’], a[’CA:57’]))

Constrain the distance between alpha carbons in residues 5 and 15 to

be less than 10 angstroms:

rsr.add(forms.UpperBound(group=physical.xy_distance,

feature=features.Distance(a[’CA:5’], a[’CA:15’]),

mean=10., stdev=0.1))

rsr.write(file=’1fas.rsr’)

atmsel.energy()

6.7.16 Restraints.unpick() — unselect restraints

unpick(*atom ids)

This command scans the currently selected restraints to find all the restraints that operate on the specified
atoms (Section 5.3.1) and then unselects them. The order of the atoms in atom ids does not matter: all
restraints that contain all and only the specified atoms are unselected. This means that it is not possible to
distinguish between the dihedral angle and improper dihedral angle restraints on the same four atoms.

The command only unselects the restraints found. To completely remove all the unselected restraints from
memory, use Restraints.condense(). The Restraints.unpick() command is useful in specifying cis-
peptide bonds in your own scripts; see cispeptide().

Example: See Restraints.add() command.

6.7.17 Restraints.reindex() — renumber model restraints using another model

reindex(mdl)

Requirements: restraints

This command renumbers atom indices in all restraints in memory. It is expected that the input restraints
refer to atoms in the passed model mdl; the re-indexed restraints will correspond to the current model. Only
those restraints that have all atoms in the current model will be selected. You can remove the others by
Restraints.condense(). This command is useful when the old restraints have to be used while changing
from one topology model to another.

Example: examples/commands/reindex restraints.py

Example for: restraints.reindex()

This will reindex restraints obtained previously for a simpler topology so

that they will now apply to a more complicated topology.

from modeller import *

from modeller.scripts import complete_pdb

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

tpl = env.libs.topology

par = env.libs.parameters

https://salilab.org/modeller/examples/commands/reindex_restraints.py

108 CHAPTER 6. MODELLER COMMAND REFERENCE

Generate the model for the simpler topology (CA only in this case):

tpl.read(file=’$(LIB)/top_ca.lib’)

par.read(file=’$(LIB)/par_ca.lib’)

code = ’1fas’

mdl = complete_pdb(env, code)

mdl.write(file=code+’.ca’)

Generate the restraints for the simpler topology:

sel = Selection(mdl)

mdl.restraints.make(sel, restraint_type=’stereo’, spline_on_site=False)

mdl.restraints.write(file=’1fas-ca.rsr’)

sel.energy()

Generate the model for the more complicated topology:

tpl.read(file=’$(LIB)/top_heav.lib’)

par.read(file=’$(LIB)/par.lib’)

mdl.read(file=code)

aln = Alignment(env)

aln.append_model(mdl, atom_files=code, align_codes=code)

aln.append_model(mdl, atom_files=code+’.ini’, align_codes=code+’-ini’)

mdl.clear_topology()

mdl.generate_topology(aln[code+’-ini’])

mdl.transfer_xyz(aln)

mdl.write(file=’1fas.ini’)

mdl2 = Model(env, file=’1fas.ca’)

mdl.restraints.reindex(mdl2)

mdl.restraints.write(file=’1fas.rsr’)

sel = Selection(mdl)

sel.energy()

6.7.18 Restraints.spline() — approximate restraints by splines

spline(form, feature, group, spline dx=0.5, spline range=4.0, spline min points=5, output=’’,

edat=None)

This command calculates and selects new restraints that are a spline approximation of the selected restraints
of the specified type. The type is specified by form (see Section 5.3.1), feature (Section 5.3.1) and group

(Table 6.1). It unselects the approximated restraints.

The restraint is approximated in a certain range only, determined differently for different mathematical
forms:

• Any form acting on an angle feature will be splined from −π to π.

• forms.Gaussian will be splined from m− spline range×σ to m+ spline range×σ, where m is the mean
and σ the standard deviation.

• forms.MultiGaussian will be splined from m− spline range× σm to M + spline range× σM , where m
and M are the minimal and maximal means of the basis pdfs, and σm and σM are their corresponding
standard deviations.

6.7. THE RESTRAINTS CLASS: STATIC RESTRAINTS 109

• forms.Spline will be splined using the existing range of the spline.

• For user-defined forms (see Section 7.1.2) the range is defined by their get range function.

• Forms that act on multiple features, such as forms.MultiBinormal or suitable user-defined forms, will
result in a ValueError.

• All other forms cannot be converted to splines, and will result in a NotImplementedError.

The spline points are distributed evenly over this range with an interval of spline dx. spline dx should be
equal to the scale of the peaks of the restraint that you want to approximate reliably. The value of the
restraint beyond the range is determined by linear extrapolation using the first derivatives at the bounds.

If the x-range and spline dx are such that the number of spline points would be less than spline min points,
the high end of the range is increased so that there are spline min points defining the “splined” restraint.

If output is set to ’SPLINE’, then tables are also written out comparing each pair of original and splined
restraints.

Example: See Restraints.make() command.

6.7.19 Restraints.append() — read spatial restraints

append(file)

This command reads restraints, excluded atom pairs, and pseudo atom definitions from a file. An excluded
atom pair specifies two atoms that are not to be tested during generation of the dynamic non-bonded pair
list. There is one restraint entry per line. The new restraints are added to those that are already in memory;
if you want to replace them, call Restraints.clear() first. All the new restraints are automatically selected.

file can be a filename or a readable file handle (see modfile.File()).

Example: See Restraints.make() command.

6.7.20 Restraints.write() — write spatial restraints

write(file)

This command writes the currently selected restraints to a file. These can be read with the
Restraints.append() command.

file can be a filename or a writeable file handle (see modfile.File()).

Example: See Restraints.make() command.

110 CHAPTER 6. MODELLER COMMAND REFERENCE

6.8 The secondary structure module: secondary structure restraints

The secondary structure module provides classes to restrain secondary structure. Note that all of these restraints
are simply added to the list of all restraints, and Modeller will attempt to satisfy them as best it can, but their
presence does not guarantee that the requested secondary structure will be adopted.

6.8.1 Alpha() — make an α-helix

Alpha(residues)

This makes restraints enforcing an α-helix (mainchain conformation class “A”) for the residue segment
specified by residues (which can be created using the Model.residue range() function). The helix is
restrained by Φ,Ψ binormal restraints, N–O hydrogen bonds, Cα–Cα distances for i − j ∈ {2 − 9}, Cα–O
distances for i− j ∈ {2−9}, and O–O distances for i− j ∈ {2−6} 5. Note that this requires all heavy atoms
to be present to work properly, so will not work with the Cα-only topology.

In many cases (e.g., most comparative modeling runs) you will already have binormal, Cα–Cα, and N-
O restraints active (which will conflict with helix restraints), so it is recommended that you first use
Restraints.unpick() followed by Restraints.condense() to remove these.

To actually add the restraints, pass the new object to Restraints.add().

Example: examples/commands/secondary structure.py

Example for Model.build_sequence(), secondary_structure.Alpha()

from modeller import *

from modeller.optimizers import ConjugateGradients

Set up environment

e = Environ()

e.libs.topology.read(’${LIB}/top_heav.lib’)

e.libs.parameters.read(’${LIB}/par.lib’)

Build an extended chain model from primary sequence, and write it out

m = Model(e)

m.build_sequence(’GSCASVCGV’)

m.write(file=’extended-chain.pdb’)

Make stereochemical restraints on all atoms

allatoms = Selection(m)

m.restraints.make(allatoms, restraint_type=’STEREO’, spline_on_site=False)

Constrain all residues to be alpha-helical

(Could also use m.residue_range() rather than m.residues here.)

m.restraints.add(secondary_structure.Alpha(m.residues))

Get an optimized structure with CG, and write it out

cg = ConjugateGradients()

cg.optimize(allatoms, max_iterations=100)

m.write(file=’alpha-helix.pdb’)

5The target distances were all obtained from a regular α-helix in one of the high-resolution myoglobin structures.

https://salilab.org/modeller/examples/commands/secondary_structure.py

6.8. THE SECONDARY STRUCTURE MODULE: SECONDARY STRUCTURE RESTRAINTS 111

6.8.2 Strand() — make a β-strand

Strand(residues)

This makes restraints enforcing an extended β-strand conformation for the residue segment specified by
residues (which can be created using the Model.residue range() function). This is achieved by applying
Φ,Ψ binormal restraints only. These binormal restraints force the mainchain conformation into class “B”,
except for the Pro residues which are restrained to class “P” [Šali & Blundell, 1993].

All of the restraints have the physical.phi psi dihedral physical restraint type, so can be strengthened
or weakened by creating a physical.Values() object (see also Section 2.2.2).

In many cases (e.g., most comparative modeling runs) you will already have binormal restraints active (which
will conflict with strand restraints), so it is recommended that you first use Restraints.unpick() followed
by Restraints.condense() to remove these.

To actually add the restraints, pass the new object to Restraints.add(). See Section 2.2.11 for an example.

6.8.3 Sheet() — make a β-sheet

Sheet(atom1, atom2, sheet h bonds)

This calculates H-bonding restraints for a pair of β-strands. atom1 and atom2 specify the first H-bond in
the β-sheet ladder. sheet h bonds specifies the number of H-bonds to be added — positive for a parallel
sheet, and negative for an anti-parallel sheet. In a parallel sheet, hydrogen bonds start at the first or the
second term of the following series (depending on atom1 and atom2): 1N:1O, 1O:3N, 3N:3O, 3O:5N, etc. For
an anti-parallel sheet, the corresponding series is 1N:3O, 1O:3N, 3N:1O, 3O:1N, etc. (note that the residue
indices run in decreasing order for the second strand in this case). The extended structure of the individual
strands themselves is not enforced; use separate Strand() restraints if so desired.

All of the restraints have the physical.h bond physical restraint type, so can be strengthened or weakened
by creating a physical.Values() object (see also Section 2.2.2).

To actually add the restraints, pass the new object to Restraints.add(). See Section 2.2.11 for an example.

112 CHAPTER 6. MODELLER COMMAND REFERENCE

6.9 The Selection class: handling of sets of atom coordinates

The Selection class holds a set of atoms from a model. Such selections can be used to perform actions on only
some model atoms.

Selections in Modeller behave almost identically to standard Python sets - see the
section in the Python manual on sets for further information. Selections are ‘sets’ in the mathematical sense,
and as such can be combined with each other in unions (using the Python union function, or the | operator) or
intersections (using the intersection function, or the & operator), etc.

All of the atoms in a selection must belong to the same Model object. Note that the selection is not a copy of
the model atoms; if model atoms are changed, the atoms will also be moved in any selection that contains those
atoms, and vice versa.

To add objects to a selection, you can list them when you create the selection with the Selection() constructor,
add them to an existing selection with Selection.add(), or combine selections with set operations (see above).

See Model.atoms, Sequence.residues, Sequence.chains, Model.atom range(), Model.residue range(),
Model.get insertions(), Model.get deletions(), and Model.loops() for valid objects (groups of atoms) to
add to the selection. You can also add Model objects and existing Selection objects to a selection. (Adding a
residue adds all atoms in that residue to the selection, adding a model adds all atoms in the model, and so on.)

See also Point.select sphere(), which creates a new Selection object.

Once you have a selection, it can be manipulated by standard Python set operations (above), by methods
to add new atoms (Selection.by residue(), Selection.select sphere()), or by methods to exclude atom or
residue types (Selection.only sidechain(), Selection.only mainchain(), Selection.only atom types(),
Selection.only residue types(), Selection.only std residues(), Selection.only no topology(),
Selection.only het residues(), Selection.only water residues(), Selection.only defined()).

6.9.1 Selection() — create a new selection

Selection(*atoms)

This creates a new empty Selection object. An initial group of atoms or other objects can be added to the
selection by listing them here; see Section 6.9 for more information.

Example: examples/python/selection.py

from modeller import *

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

mdl = Model(env, file=’1fdn’)

New empty selection

s = Selection()

Add all atoms from residues 4 through 10 (chain A) inclusive (PDB numbering)

s.add(mdl.residue_range(’4:A’, ’10:A’))

Selection of all atoms currently within 5A of atom CA in residue 1 in chain A

(this destroys the previous selection):

s = mdl.atoms[’CA:1:A’].select_sphere(5)

Is the CB:1:A atom in the selection?

https://www.python.org/
https://docs.python.org/2/library/stdtypes.html#set-types-set-frozenset
https://www.python.org/
https://salilab.org/modeller/examples/python/selection.py

6.9. THE SELECTION CLASS: HANDLING OF SETS OF ATOM COORDINATES 113

print(mdl.atoms[’CB:1:A’] in s)

Alternative ways of selecting the same atom:

print(mdl.chains[’A’].residues[’1’].atoms[’CB’] in s)

print(mdl.residues[’1:A’].atoms[’CB’] in s)

All atoms currently within 5A of atom CA:1:A, OR currently within 3A of the

point (1,10,1):

s = mdl.atoms[’CA:1:A’].select_sphere(5) | mdl.point(1,10,1).select_sphere(3)

All atoms currently within 5A of atom CA:1:A, AND also currently within 3A

of the point (1,10,1):

s = mdl.atoms[’CA:1:A’].select_sphere(5) & mdl.point(1,10,1).select_sphere(3)

All atoms currently within 5A of atom CA:1:A, OR currently within 3A of the

point (1,10,1), but not BOTH:

s = mdl.atoms[’CA:1:A’].select_sphere(5) ^ mdl.point(1,10,1).select_sphere(3)

Create a selection containing the CA atom from residue 1, chain A,

and all of residue 2 (PDB numbering)

s = Selection(mdl.atoms[’CA:1:A’], mdl.residues[’2:A’])

All residues EXCEPT 5-10 in chain A (i.e. all atom selection minus the

selection of residues 5-10, otherwise known as an inverted selection):

s = Selection(mdl) - Selection(mdl.residue_range(’5:A’, ’10:A’))

All atoms in any residue that contains a CG atom

s = Selection(mdl).only_atom_types(’CG’).by_residue()

The same as above, plus all atoms in residues immediately neighboring

these residues (by sequence)

s = Selection(mdl).only_atom_types(’CG’).extend_by_residue(1)

Selection of residues 1, 4, 8 and 10-15 (PDB numbering) from chain A:

s = Selection(mdl.residues[’1:A’], mdl.residues[’4:A’], mdl.residues[’8:A’],

mdl.residue_range(’10:A’, ’15:A’))

Print the center of mass (note: not mass weighted)

print(s.mass_center)

Rotate by 90 degrees about the z axis through the origin (0,0,0)

(right handed rotation)

s.rotate_origin([0,0,1], 90)

The same thing, except that the axis passes through the center of mass:

s.rotate_mass_center([0,0,1], 90)

Translate by 5 angstroms along the x axis

s.translate([5.0, 0, 0])

Equivalent (but less efficient, as it involves calculating the COM)

s.x += 5.0

Example: examples/commands/pick atoms.py

https://salilab.org/modeller/examples/commands/pick_atoms.py

114 CHAPTER 6. MODELLER COMMAND REFERENCE

This will pick various subsets of atoms in the MODEL and compare them

with MODEL2.

from modeller import *

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

log.level(1, 1, 1, 1, 0)

Read the models and the alignment:

mdl = Model(env, file=’1fas’)

mdl2 = Model(env, file=’2ctx’)

aln = Alignment(env, file=’toxin.ali’, align_codes=(’1fas’, ’2ctx’))

aln.write(file=’toxin.pap’, alignment_format=’PAP’)

Pick and superpose mainchain atoms:

atmsel = Selection(mdl).only_mainchain()

atmsel.superpose(mdl2, aln)

Pick and superpose sidechain atoms:

atmsel = Selection(mdl).only_sidechain()

atmsel.superpose(mdl2, aln)

Pick and superpose CA and CB atoms:

atmsel = Selection(mdl).only_atom_types(’CA CB’)

atmsel.superpose(mdl2, aln)

Pick all atoms in residues with rings:

atmsel = Selection(mdl).only_residue_types(’TYR PHE TRP HIS’)

Pick and superpose all atoms:

atmsel = Selection(mdl)

atmsel.superpose(mdl2, aln)

Pick and superpose CA and CB atoms in one segment only:

atmsel = Selection(mdl.residue_range(’2:A’, ’10:A’)).only_atom_types(’CA CB’)

atmsel.superpose(mdl2, aln)

Pick and superpose all atoms within 6 angstroms of the ’CA’ atom in

residue ’10’ in chain A:

atmsel = mdl.atoms[’CA:10:A’].select_sphere(6.0)

atmsel.superpose(mdl2, aln)

Pick and superpose all atoms within 6 angstroms of any atom in

segment 2:A to 10:A

atmsel = Selection(mdl.residue_range(’2:A’, ’10:A’)).select_sphere(6.0)

atmsel.superpose(mdl2, aln)

Pick all atoms in the model

atmsel = Selection(mdl)

Pick all atoms in all loops (ie residues within 2 positions

of any gap in the alignment):

loops = mdl2.loops(aln, minlength=5, maxlength=15, insertion_ext=2,

deletion_ext=2)

atmsel = Selection(loops)

6.9. THE SELECTION CLASS: HANDLING OF SETS OF ATOM COORDINATES 115

Pick all atoms within 6 angstroms of all loops

atmsel = Selection(loops).select_sphere(6.0)

6.9.2 Selection.add() — add objects to selection

add(obj)

This adds the given objects (which can be atoms, residues, atom lists, etc) to the selection. obj can also be
a Python list or tuple, in which case every object in the list is added.

6.9.3 Selection.extend by residue() — extend selection by residue

extend by residue(extension)

This returns a new selection, in which any residues in the existing selection that have at least one selected
atom are now entirely selected. Additionally, extension residues around each selected residue (by sequence)
are also selected. The original selection is unchanged.

Example: See Selection() command.

6.9.4 Selection.by residue() — make sure all residues are fully selected

by residue()

This returns a new selection, in which any residues in the existing selection that have at least one selected
atom are now entirely selected (all atoms in each residue are selected). The original selection is unchanged.
This is equivalent to calling Selection.extend by residue() with an extension of zero.

Example: See Selection() command.

6.9.5 Selection.select sphere() — select all atoms within radius

select sphere(radius)

This returns a new selection containing all atoms within the given distance from any atom in the current
selection (note that this uses only the current coordinates — if you move the atoms later, e.g. during an
optimization, the set of atoms does not change). Compare with Point.select sphere().

Example: See Selection() command.

6.9.6 Selection.only mainchain() — select only mainchain atoms

only mainchain()

This returns a new selection containing only mainchain atoms (i.e., atom types O, OT1, OT2, OXT, C, CA,
N) from the current selection.

https://www.python.org/

116 CHAPTER 6. MODELLER COMMAND REFERENCE

6.9.7 Selection.only sidechain() — select only sidechain atoms

only sidechain()

This returns a new selection containing only sidechain atoms from the current selection. It is the opposite
of Selection.only mainchain().

6.9.8 Selection.only atom types() — select only atoms of given types

only atom types(atom types)

This returns a new selection containing only atoms from the current selection of the given space-separated
type(s).

Example: See Selection() command.

6.9.9 Selection.only residue types() — select only atoms of given residue type

only residue types(residue types)

This returns a new selection containing only atoms from the current selection in residues of the given space-
separated type(s). The type is the Charmm name, as defined in ’modlib/restyp.lib’.

Example: See Selection() command.

6.9.10 Selection.only std residues() — select only standard residues

only std residues()

This returns a new selection containing only atoms from the current selection in standard residue types (i.e.,
everything but BLK and HETATM).

6.9.11 Selection.only no topology() — select only residues without topology

only no topology()

This returns a new selection containing only atoms from the current selection in residues that have no defined
topology. This generally includes BLK and unknown residue types, and is used by the AutoModel class to
generate rigid body restraints.

6.9.12 Selection.only het residues() — select only HETATM residues

only het residues()

This returns a new selection containing only atoms from the current selection in HETATM residues.

6.9. THE SELECTION CLASS: HANDLING OF SETS OF ATOM COORDINATES 117

6.9.13 Selection.only water residues() — select only water residues

only water residues()

This returns a new selection containing only atoms from the current selection in water residues.

6.9.14 Selection.only defined() — select only atoms with defined coordinates

only defined()

This returns a new selection containing only atoms from the current selection that have defined coordinates
(see Model.build() and Model.transfer xyz()).

6.9.15 Selection.write() — write selection coordinates to a file

write(file, model format=’PDB’, no ter=False, extra data=’’)

This command writes the coordinates of all atoms in the selection to a file in the selected format.

See Model.write() for full details; note that only ’PDB’ and ’MMCIF’ outputs are supported with this
command.

6.9.16 Selection.translate() — translate all coordinates

translate(vector)

This translates the coordinates of all atoms in the selection by the given vector. All distances are in angstroms.

Example: See Selection() command.

6.9.17 Selection.rotate origin() — rotate coordinates about origin

rotate origin(axis, angle)

This does a right-handed rotation of the coordinates of all atoms in the selection about the given
axis through the origin, by the given angle (in degrees). See also Selection.transform() and
Selection.rotate mass center().

Example: See Selection() command.

6.9.18 Selection.rotate mass center() — rotate coordinates about mass center

rotate mass center(axis, angle)

This does a right-handed rotation of the coordinates of all atoms in the selection about the given
axis through the mass center, by the given angle (in degrees). See also Selection.transform() and
Selection.rotate origin().

Example: See Selection() command.

118 CHAPTER 6. MODELLER COMMAND REFERENCE

6.9.19 Selection.transform() — transform coordinates with a matrix

transform(matrix)

This transforms all the selection’s coordinates using the given 3x3 matrix. This can be used to perform
rotations, translations, shears, etc.

Example: examples/commands/rotate model.py

Example for: Selection.transform(), Selection.translate(),

Selection.rotate_origin()

This will orient a model as specified:

from modeller import *

Read the structure:

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

mdl = Model(env, file=’1fas’)

Select all atoms

s = Selection(mdl)

Translate 1 angstrom along the x axis:

s.translate([1, 0, 0])

Transform with a rotation matrix (no change in this example):

s.transform([[1, 0, 0],

[0, 1, 0],

[0, 0, 1]])

Rotate 90 degrees about the axis, through the origin:

s.rotate_origin([1, 1, 1], 90)

mdl.write(file=’1fas.ini’)

6.9.20 Selection.mutate() — mutate selected residues

mutate(residue type)

This command mutates the selected residues to the type specified by residue type. Charmm 4-character
residue type names are used (see library file $RESTYP LIB). All of the residues with at least one selected
atom are mutated. To produce mutants, employ this command with Alignment.append model() and
Alignment.write(). It is usually necessary to write the mutated sequence out and read it in before pro-
ceeding, because not all sequence related information about the model is changed by this command (e.g.,
internal coordinates, charges, and atom types and radii are not updated).

Example: examples/commands/mutate selection.py

Example for: Selection.mutate()

This will read a PDB file, change its sequence a little, build new

coordinates for any of the additional atoms using only the internal

https://salilab.org/modeller/examples/commands/rotate_model.py
https://salilab.org/modeller/examples/commands/mutate_selection.py

6.9. THE SELECTION CLASS: HANDLING OF SETS OF ATOM COORDINATES 119

geometry, and write the mutant PDB file. It can be seen as primitive

but rapid comparative modeling for substitution mutants. For more

sophisticated modeling, see https://salilab.org/modeller/wiki/Mutate%20model

#

For insertion and deletion mutants, follow the standard comparative

modeling procedure.

from modeller import *

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

Read the topology library with non-hydrogen atoms only:

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

To produce a mutant with all hydrogens, uncomment this line:

#env.libs.topology.read(file=’$(LIB)/top_allh.lib’)

Read the CHARMM parameter library:

env.libs.parameters.read(file=’$(LIB)/par.lib’)

Read the original PDB file and copy its sequence to the alignment array:

code = ’1fas’

aln = Alignment(env)

mdl = Model(env, file=code)

aln.append_model(mdl, atom_files=code, align_codes=code)

Select the residues to be mutated: in this case all ASP residues:

sel = Selection(mdl).only_residue_types(’ASP’)

The second example is commented out; it selects residues ’1’ and ’10’.

#sel = Selection(mdl.residues[’1’], mdl.residues[’10’])

Mutate the selected residues into HIS residues (neutral HIS):

sel.mutate(residue_type=’HIS’)

Add the mutated sequence to the alignment arrays (it is now the second

sequence in the alignment):

aln.append_model(mdl, align_codes=’1fas-1’)

Generate molecular topology for the mutant:

mdl.clear_topology()

mdl.generate_topology(aln[’1fas-1’])

Transfer all the coordinates you can from the template native structure

to the mutant (this works even if the order of atoms in the native PDB

file is not standard):

mdl.transfer_xyz(aln)

Build the remaining unknown coordinates for the mutant:

mdl.build(initialize_xyz=False, build_method=’INTERNAL_COORDINATES’)

Write the mutant to a file:

mdl.write(file=’1fas-1.atm’)

120 CHAPTER 6. MODELLER COMMAND REFERENCE

6.9.21 Selection.randomize xyz() — randomize selected coordinates

randomize xyz(deviation)

This command randomizes the Cartesian coordinates of the selected atoms.

If deviation is positive, the coordinates are randomized by the addition of a random number uniformly
distributed in the interval from −deviation to +deviation angstroms. Atoms in residues containing rings
(TYR, PHE, TRP, HIS) are capped to move no more than 0.5 angstroms regardless of the setting of deviation,
so that the ring structure is roughly maintained and the system does not later get stuck in local minima.

If deviation is negative, the coordinates are assigned a random value uniformly distributed in the interval
from −deviation to +deviation angstroms.

Any defined rigid bodies (see Section 5.3.4) remain rigid; only their mass centers are modified by this
command (no rotation is done).

Example: examples/commands/randomize xyz.py

Example for: Selection.randomize_xyz()

This will randomize the X,Y,Z of the model:

from modeller import *

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

mdl = Model(env, file=’1fas’)

Act on all atoms in the model

sel = Selection(mdl)

Change all existing X,Y,Z for +- 4 angstroms:

sel.randomize_xyz(deviation=4.0)

mdl.write(file=’1fas.ini1’)

Assign X,Y,Z in the range from -100 to 100 angstroms:

sel.randomize_xyz(deviation=-100.0)

mdl.write(file=’1fas.ini2’)

6.9.22 Selection.superpose() — superpose model on selection given alignment

superpose(mdl2, aln, fit=True, superpose refine=False, rms cutoff=3.5, reference atom=’’,

reference distance=3.5, refine local=True, swap atoms in res=’’)

Output: SuperposeData object

This command superposes mdl2 on the selection, without changing the alignment, aln.

The selection model must be the first sequence in the alignment; mdl2 must be the second sequence in the
alignment. The equivalent atoms are the selected atoms that have equivalently named atoms in mdl2; the
atom equivalences are defined in library $ATMEQV LIB.

No fitting is done if fit = False.

https://salilab.org/modeller/examples/commands/randomize_xyz.py

6.9. THE SELECTION CLASS: HANDLING OF SETS OF ATOM COORDINATES 121

rms cutoff is the cutoff used in calculating the cutoff Rms deviations; i.e., those position and distance Rms

deviations that are defined on the equivalent atoms which are less than rms cutoff angstroms away from each
other (as superposed using all aligned positions) and those equivalent distances which are less than rms cutoff

angstroms different from each other, respectively.

If refine local is True the superposition is then refined by considering local similarity. The DRMS profile of
the two structures is calculated over a moving window of 11 residues, and a simple heuristic is then used
to detect boundaries between local structural fragments. Then each of these fragments is used as the basis
for least-squares fitting. The final returned orientation is that which results in the maximum number of
equivalent positions, if any is better than the original superposition. (Note that this may result in a higher
RMS.)

If superpose refine is True the refinement of the superposition is done by repeating the fitting with only
those aligned pairs of atoms that are within rms cutoff of each other until there is no change in the
number of equivalent positions. This refinement can only remove compared positions, not add them like
Alignment.align3d() can do. This is useful for comparing equivalent parts of two structures with a fixed
alignment but omitting divergent parts from the superposition and Rms deviation calculation; e.g., compar-
ing a model with the X-ray structure.

If superpose refine is False and reference atom is non-blank, only those pairs of equivalently named selected
atoms from aligned residues are superposed that come from residues whose reference atom atoms are closer
than reference distance Å to each other.

When the selection model and mdl2 have exactly the same atoms in the same order, one can set
swap atoms in res to any combination of single character amino acid residue codes in DEFHLNQRVY. Cer-
tain atoms (see below) in the specified sidechains of mdl2 are then swapped to minimize their Rms deviation
relative to the selection model. The labeling resulting in the lowest Rms deviation is retained. The following
swaps are attempted:

Residue Swap(s)
D OD1, OD2
E OE1, OE2
F CD1, CD2

CE1, CE2
H ND1, CD2

NE2, CE1
N OD1, ND2
Q OE1, NE2
R NH1, NH2
V CG1, CG2
Y CD1, CD2

CE1, CE2

On successful completion, a SuperposeData object is returned, which contains all of the calculated data. For
instance, if you save this in a variable ’r’, the following data are available:

• r.initial rms; the RMS before superposition

• r.rms; the RMS after superposition

• r.drms; the distance RMS after superposition

• r.cutoff rms; the RMS after superposition of atoms within rms cutoff

• r.cutoff drms; the DRMS after superposition of distances within rms cutoff

• r.rotation; the rotation matrix that was used to transform mdl2 (applied first), if fit is True

• r.translation; the translation that was used to transform mdl2 (applied after rotation), if fit is True

• r.num equiv pos; the number of equivalent positions

• r.num equiv dist; the number of equivalent distances

• r.num equiv cutoff pos; the number of equivalent positions within rms cutoff

122 CHAPTER 6. MODELLER COMMAND REFERENCE

• r.num equiv cutoff dist; the number of equivalent distances within rms cutoff

Example: examples/commands/superpose.py

Example for: Selection.superpose()

This will use a given alignment to superpose Calpha atoms of

one structure (2ctx) on the other (1fas).

from modeller import *

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

mdl = Model(env, file=’1fas’)

mdl2 = Model(env, file=’2ctx’)

aln = Alignment(env, file=’toxin.ali’, align_codes=(’1fas’, ’2ctx’))

atmsel = Selection(mdl).only_atom_types(’CA’)

r = atmsel.superpose(mdl2, aln)

We can now use the calculated RMS, DRMS, etc. from the returned ’r’ object:

rms = r.rms

drms = r.drms

print("%d equivalent positions" % r.num_equiv_pos)

mdl2.write(file=’2ctx.fit’)

Example: examples/commands/align3d.py

Example for: Alignment.align3d(), Selection.superpose()

This will align 3D structures of two proteins:

from modeller import *

log.verbose()

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

First example: read sequences from a sequence file:

aln = Alignment(env)

aln.append(file=’toxin.ali’, align_codes=[’1fas’, ’2ctx’])

aln.align(gap_penalties_1d=[-600, -400])

aln.align3d(gap_penalties_3d=[0, 4.0])

aln.write(file=’toxin-str.ali’)

Second example: read sequences from PDB files to eliminate the

need for the toxin.ali sequence file:

mdl = Model(env)

aln = Alignment(env)

for code in [’1fas’, ’2ctx’]:

mdl.read(file=code)

aln.append_model(mdl, align_codes=code, atom_files=code)

aln.align(gap_penalties_1d=(-600, -400))

aln.align3d(gap_penalties_3d=(0, 2.0))

https://salilab.org/modeller/examples/commands/superpose.py
https://salilab.org/modeller/examples/commands/align3d.py

6.9. THE SELECTION CLASS: HANDLING OF SETS OF ATOM COORDINATES 123

aln.write(file=’toxin-str.ali’)

And now superpose the two structures using current alignment to get

various RMS’s:

mdl = Model(env, file=’1fas’)

atmsel = Selection(mdl).only_atom_types(’CA’)

mdl2 = Model(env, file=’2ctx’)

atmsel.superpose(mdl2, aln)

Example: examples/commands/swap atoms in res.py

This script illustrates the use of the swap_atoms_in_res

argument to the Selection.superpose() command:

Need to make sure that the topologies of the two molecules

superposed are exactly the same:

from modeller import *

from modeller.scripts import complete_pdb

env = Environ()

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

atfil = ’../atom_files/pdb1fdn.ent’

mdl = complete_pdb(env, atfil)

aln = Alignment(env)

aln.append_model(mdl, align_codes=’orig’)

mdl2 = Model(env, file=’1fdn.swap.atm’)

aln.append_model(mdl2, align_codes=’swap’)

atmsel = Selection(mdl)

atmsel.superpose(mdl2, aln, swap_atoms_in_res=’’)

atmsel.superpose(mdl2, aln, swap_atoms_in_res=’DEFHLNQRVY’, fit=False)

atmsel.superpose(mdl2, aln, swap_atoms_in_res=’’, fit=True)

6.9.23 Selection.rotate dihedrals() — change dihedral angles

rotate dihedrals(deviation, change, dihedrals=(’PHI’, ’PSI’, ’CHI1’, ’CHI2’, ’CHI3’, ’CHI4’))

Requirements:
for change=’OPTIMIZE’: topology & restraints
for change=’RANDOMIZE’: topology

This command changes the dihedral angles of the selected residues. A residue is selected if any of its atoms
is in the atom selection.

change selects an optimization (when equal to ’OPTIMIZE’) or randomization (when equal to ’RANDOMIZE’):

1. When optimizing, this command finds the first selected restraint that restrains the specified dihedral
angle of each selected residue. It then sets the value of that dihedral to the most likely value.

https://salilab.org/modeller/examples/commands/swap_atoms_in_res.py

124 CHAPTER 6. MODELLER COMMAND REFERENCE

2. When randomizing, the command changes the specified dihedral angle of each selected residue by adding
a random value distributed uniformly from −deviation to +deviation degrees.

dihedrals can be either a vector of dihedral angle names or a single string containing all the dihedral angle
names separated by blanks. The dihedral angles involved in cyclic structures are not changed (e.g., sidechain
dihedral angles in disulfide bonds and prolines). The dihedral angles that can be changed are listed at the
top of the $RESDIH LIB library: alpha, phi, psi, omega, chi1, chi2, chi3, chi4, chi5. Dihedral
angle ’alpha’ is the virtual Cα dihedral angle defined by four consecutive Cα atoms.

The bond connectivity of the MODEL has to exist before this command is executed. If you read in the
model by Model.read(), the bond connectivity is defined by subsequent calls to Topology.append() and
Model.generate topology() (also make sure that sequence entry does not exist in the alignment or that
no alignment is in memory).

Example: examples/commands/rotate dihedrals.py

Example for: Selection.rotate_dihedrals()

from modeller import *

from modeller.scripts import complete_pdb

This will optimize and randomize dihedrals in a MODEL

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

Select dihedral angle types for optimization and randomization:

dih = ’phi psi omega chi1 chi2 chi3 chi4 chi5’

Read the sequence, get its topology and coordinates:

mdl = complete_pdb(env, ’1fas’)

Select all atoms

atmsel = Selection(mdl)

atmsel.rotate_dihedrals(change=’RANDOMIZE’, deviation=90.0, dihedrals=dih)

mdl.write(file=’1fas.ini1’)

Get restraints from somewhere and optimize dihedrals:

mdl.restraints.make(atmsel, restraint_type=’stereo’, spline_on_site=False)

atmsel.rotate_dihedrals(change=’OPTIMIZE’, deviation=90.0, dihedrals=dih)

mdl.write(file=’1fas.ini2’)

6.9.24 Selection.unbuild() — undefine coordinates

unbuild()

This command undefines all of the Cartesian coordinates of the selected atoms.

6.9.25 Selection.hot atoms() — atoms violating restraints

hot atoms(pick hot cutoff, residue span range=(0, 99999), viol report cut=physical.Values(default=4.500000,

chi1 dihedral=999.000000, chi2 dihedral=999.000000, chi3 dihedral=999.000000,

https://salilab.org/modeller/examples/commands/rotate_dihedrals.py

6.9. THE SELECTION CLASS: HANDLING OF SETS OF ATOM COORDINATES 125

chi4 dihedral=999.000000, chi5 dihedral=999.000000, phi psi dihedral=6.500000,

nonbond spline=999.000000, accessibility=999.000000, density=999.000000, gbsa=999.000000,

em density=999.000000), schedule scale=None, edat=None)

Output: Selection

This command evaluates the energy for all atoms in the selection, and returns a new selection containing
atoms that should be optimized to remove hot spots in the model; only selected restraints are considered.
The scaling factors for the physical restraint types are given by schedule scale.

More precisely, the command first flags violated selected atoms. An atom is violated if it is part of a
violated restraint. A restraint of physical group x (Table 6.1) is violated when its relative heavy violation
(see Section 5.3.1) is larger than specified in viol report cut[x].

The command then flags those selected atoms that are within the pick hot cutoff angstroms of any of the
already flagged atoms.

It is often sensible to follow this command with Selection.extend by residue(), to select sidechains and
neighboring residues.

This command is usually followed by the Restraints.pick() command, to select all the restraints that
operate on selected (hot) atoms, and then an optimization (see Section 6.11).

Example: examples/commands/pick hot atoms.py

Example for: Selection.hot_atoms()

This will pick atoms violated by some restraints (bond length restraints

here), select restraints operating on violated atoms, and calculate the

energy for the selected restraints only (note that a list of violated

restraints can be obtained by the ENERGY command alone).

from modeller import *

from modeller.scripts import complete_pdb

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

env.edat.dynamic_sphere = False

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

Read the sequence, calculate its topology and coordinates:

mdl = complete_pdb(env, "1fas")

Just to get some violations:

atmsel = Selection(mdl)

atmsel.randomize_xyz(deviation=0.06)

Create the bond length restraints and ignore the hard sphere overlap:

mdl.restraints.make(atmsel, restraint_type=’bond’, spline_on_site=False)

Pick hot residues and the corresponding violated and neighboring restraints:

atmsel = atmsel.hot_atoms(pick_hot_cutoff=4.0).by_residue()

mdl.restraints.unpick_all()

mdl.restraints.pick(atmsel)

Calculate the energy of the selected restraints and write them out in detail:

atmsel.energy(output=’VERY_LONG’)

https://salilab.org/modeller/examples/commands/pick_hot_atoms.py

126 CHAPTER 6. MODELLER COMMAND REFERENCE

6.9.26 Selection.energy() — evaluate atom selection given restraints

energy(asgl output=False, normalize profile=False, residue span range=(0, 99999), output=’LONG’,

file=’default’, viol report cut=physical.Values(default=4.500000, chi1 dihedral=999.000000,

chi2 dihedral=999.000000, chi3 dihedral=999.000000, chi4 dihedral=999.000000,

chi5 dihedral=999.000000, phi psi dihedral=6.500000, nonbond spline=999.000000,

accessibility=999.000000, density=999.000000, gbsa=999.000000, em density=999.000000),

viol report cut2=physical.Values(default=2.000000), smoothing window=3, schedule scale=None,

edat=None)

Output: (molpdf, terms)

Requirements: restraints

The main purpose of this command is to compare spatial features of the atom selection with the selected
restraints in order to determine the violations of the molecular pdf. It lists variable amounts of information
about the values of the basis, feature, and molecular pdf’s for the current MODEL. All arguments that affect
the value of the molecular pdf are also relevant for the Selection.energy() command.

The scaling factors for the physical restraint types are given by schedule scale. This allows easy reporting of
only a selected subset of all restraints.

Most of the output goes to the log file. The output of the Selection.energy() command has to be examined
carefully, at least at the end of the optimization, when the final model is produced. Additional output files,
for the Asgl plotting program are created if asgl output = True (undocumented).

output selects various kinds of output information:

• ’LONG’ writes restraint violations one per line to the log file.

• ’VERY LONG’ writes the most detailed examination of the selected basis and feature pdf’s to the log

file, using several lines of output for each restraint.

• ’NO REPORT’ suppresses the output of the violated restraints summary (unless profiles are also re-
quested) and also that of nonbond clashes.

• ’GRADIENT’ writes the magnitudes of the ‘force’ gradients for the currently selected restraints to the
isotropic temperature factors (Biso) for each atom of the current MODEL.

• ’ENERGY PROFILE’ or ’VIOLATIONS PROFILE’ write out residue energies or heavy relative violations to
a file and to the Biso column (see below).

viol report cut is a vector with one real number for each physical restraint type. A restraint is reported when
its ‘heavy relative violation’ (see Section 5.3.1) is larger than the corresponding cutoff.

viol report cut2 is similar to viol report cut, except that it contains cutoffs for restraint ‘energies’, not heavy
relative violations.

The meaning of various other reported properties of the violated restraints is briefly described in the log file.
For interpreting the seriousness of violations, use the following rule of thumb: There should be at most a few
small violations (e.g., 4 standard deviations) for all monomodal restraints. In comparative modeling, the
monomodal restraints include the stereochemical restraints and distance restraints when only one homologous
structure is used. For the multimodal restraints, there are usually many violations reported because the
heaviest violations are used in deciding whether or not to report a violation. In comparative modeling, the
multimodal restraints include the χi restraints, (Φ, Ψ) binormal restraints and distance restraints when more
than one template is used. See also Section 3.1, Question 13.

For profiles:

This command calculates residue energies or heavy relative violations, depending on output, for all physical
restraint types (see Table 6.1). Relative heavy violations (see Section 5.3.1) are used because only relative

violations of different features are comparable. In both cases, the residue sum is the sum over all restraints
that have at least one atom in a given residue. The contribution of each restraint is counted exactly once

https://salilab.org/asgl/

6.9. THE SELECTION CLASS: HANDLING OF SETS OF ATOM COORDINATES 127

for each residue, without any weighting. Restraints spanning more than one residue contribute equally to
all of them. Thus, the sum of residue energies is generally larger than molecular pdf. The command also
calculates the sum over all physical restraint types of the contributions for each residue and then writes all
the contributions, plus this sum, as columns in a a file suitable for plotting by a plotting program such as
Asgl or GnuPlot.

If normalize profile is True the profile for each residue is normalized by the number of terms applying to each
residue.

All the curves are smoothed by the running window averaging method if smoothing window is larger than 0:
The window is centered on residue i and extends for (smoothing window/2) - 1 residues on each side. Thus,
smoothing window has to be an even number (or it is made such by the program automatically). The only
exceptions are the two termini, where a smaller number of residues are available for smoothing. The relative
weight of residue j when calculating the smoothed value at residue i is (smoothing window/2− |j − i|).
The energy or the violations profile (sum over all restraint types) is also written to the Biso field of the model
(the temperature factor for PDB X-ray structures). Note that all the atoms in one residue get the same
number. This output is useful for exploring the violations on a graphics terminal.

This function returns the total value of the objective function, molpdf, and the contributions from each
physical restraint type, terms.

Example: examples/scoring/energy.py

Example for: Selection.energy()

This will calculate the stereochemical energy (bonds,

angles, dihedrals, impropers) for a given model.

from modeller import *

from modeller.scripts import complete_pdb

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

def patch_disulfides(mdl):

Must patch disulfides here to calculate the non-bonded

energy properly. Also, when you use hydrogens, disulfides

must always be patched so that sulfhydril hydrogens are

removed from the model.

for ids in [(’17:A’, ’39:A’),

(’3:A’, ’22:A’),

(’53:A’, ’59:A’),

(’41:A’, ’52:A’)]:

mdl.patch(residue_type=’DISU’, residues=[mdl.residues[r] for r in ids])

mdl = complete_pdb(env, "1fas", special_patches=patch_disulfides)

Select all atoms

atmsel = Selection(mdl)

mdl.restraints.make(atmsel, restraint_type=’stereo’, spline_on_site=False)

Actually calculate the energy

(molpdf, terms) = atmsel.energy(edat=EnergyData(dynamic_sphere=True))

molpdf is the total ’energy’, and terms contains the contributions from

https://salilab.org/asgl/
https://salilab.org/modeller/examples/scoring/energy.py

128 CHAPTER 6. MODELLER COMMAND REFERENCE

each physical type. Here we print out the bond length contribution:

print("Bond energy is %.3f" % terms[physical.bond])

6.9.27 Selection.debug function() — test code self-consistency

debug function(residue span range=(0, 99999), debug function cutoff=(0.01, 0.001, 0.1),

detailed debugging=False, schedule scale=None, edat=None)

Output: n exceed

This command checks the self-consistency of the code for the objective function and its derivatives by cal-
culating and comparing numeric and analytical derivatives. All the parameters influencing the evaluation of
the molecular pdf are also relevant (see Selection.energy()). The derivative is reported if both the absolute
difference and the fractional difference between the two kinds of evaluations exceed debug function cutoff[0]
and debug function cutoff[1], respectively. This command returns n exceed, the number of such reported
differences.

The scaling factors for the physical restraint types are given by schedule scale. This allows some restraints
to be turned off (scaled to zero) for the purpose of this test, if required.

When detailed debugging is True, the analytic and numeric derivatives of each restraint with respect to
atomic positions are also compared for the atoms ‘violated’ by the whole molecular pdf. The absolute cutoff
for writing out the discrepancies is scaled by debug function cutoff[2]; the relative cutoff remains the same as
before.

Example: examples/scoring/debug function.py

Example for: Selection.debug_function()

This will use the MODELLER AutoModel class to construct homology

restraints for 1fas. It will then use Model.debug_function() to test

the source code for the function and derivatives calculation

by comparing analytical and numerical first derivatives (note that

AutoModel is a derived class of model, so all ’model’ methods will work

on ’AutoModel’). Some discrepancies may be reported but ignore them here.

from modeller import *

from modeller.automodel import AutoModel # Load the AutoModel class

log.verbose()

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

a = AutoModel(env, alnfile = ’debug_function.ali’,

knowns = (’2ctx’, ’2nbt’), sequence = ’1fas’)

a.spline_on_site = False

a.make(exit_stage=1)

Test on all atoms

atmsel = Selection(a)

To assign 0 weights to restraints whose numerical derivatives

code does not work (i.e., splines for angles and dihedrals):

scal = physical.Values(default=1.0, lennard_jones=0, coulomb=0, h_bond=0,

https://salilab.org/modeller/examples/scoring/debug_function.py

6.9. THE SELECTION CLASS: HANDLING OF SETS OF ATOM COORDINATES 129

phi_dihedral=0, psi_dihedral=0, omega_dihedral=0,

chi1_dihedral=0, chi2_dihedral=0, chi3_dihedral=0,

chi4_dihedral=0, disulfide_angle=0,

disulfide_dihedral=0, chi5_dihedral=0)

atmsel.energy(output=’SHORT’, schedule_scale=scal)

atmsel.debug_function(debug_function_cutoff=(15.00, 0.10, 0.1),

detailed_debugging=True, schedule_scale=scal)

6.9.28 Selection.assess dope() — assess a model selection with the DOPE method

assess dope(**vars)

Output: molpdf

This command assesses the quality of the selected atoms in the model using the DOPE (Discrete Optimized
Protein Energy) method [Shen & Šali, 2006]. (See Selection.assess() for assessment with SOAP and other
potentials.) This is a statistical potential optimized for model assessment. As with Model.assess ga341(),
the benchmark set used to develop this method contained only single-chain proteins, and thus no guarantees
can be made about the applicability of the method to multiple-chain systems.

DOPE uses the standard Modeller energy function, so any of the arguments accepted by
Selection.energy() can also be used here. (Note also that the model’s topology must be set up in or-
der to calculate the energy, which can be done for you by the complete pdb() script.)

Only the DOPE energy itself is returned by this command (all other components of the Modeller energy
function, such as stereochemical restraints, Lennard-Jones interactions, homology-derived restraints, etc, are
ignored) unless you manually set schedule scale. See Selection.energy() for more details. Note that the
assessment uses a custom EnergyData object, so any changes you make to the selection’s EnergyData (e.g.,
changing the EnergyData.contact shell cutoff distance or setting EnergyData.nonbonded sel atoms) will not be
honored. Note also that any intra-rigid body distances are not considered as part of the DOPE assessment
(see Section 5.3.4), so if you have any defined rigid bodies, you may want to consider turning them off before
requesting this assessment.

The DOPE model score is designed for selecting the best structure from a collection of models built by
Modeller. (For example, you could build multiple AutoModel models by setting AutoModel.ending model,
and select the model that returns the lowest DOPE score.) The score is unnormalized with respect to the
protein size and has an arbitrary scale, therefore scores from different proteins cannot be compared directly.
If you wish to do this, use Model.assess normalized dope() instead, which returns a Z-score.

When using AutoModel or LoopModel, automatic DOPE assessment of each model can be requested by
adding assess.DOPE to AutoModel.assess methods or LoopModel.loop.assess methods respectively.

Example: examples/assessment/assess dope.py

Example for: Selection.assess_dope()

from modeller import *

from modeller.scripts import complete_pdb

env = Environ()

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

Read a model previously generated by Modeller’s AutoModel class

mdl = complete_pdb(env, ’../atom_files/1fdx.B99990001.pdb’)

https://salilab.org/modeller/examples/assessment/assess_dope.py

130 CHAPTER 6. MODELLER COMMAND REFERENCE

Select all atoms in the first chain

atmsel = Selection(mdl.chains[0])

score = atmsel.assess_dope()

6.9.29 Selection.assess dopehr() — assess a model with the DOPE-HR method

assess dopehr(**vars)

Output: molpdf

This command assesses the quality of the model using the DOPE-HR method. This is very similar to the
original DOPE method (see Selection.assess dope()) but is obtained at higher resolution (using a bin size
of 0.125Å rather than 0.5Å).

When using AutoModel or LoopModel, automatic DOPE-HR assessment of each model can be requested by
adding assess.DOPEHR to AutoModel.assess methods or LoopModel.loop.assess methods respectively.

Example: See Selection.assess dope() command.

6.9.30 Selection.get dope profile() — get per-residue DOPE profile

get dope profile()

Output: EnergyProfile

This returns the individual residue components of the DOPE score, which can be used to detect poor regions
of the model. See Selection.assess dope() for more details on DOPE, and Section 6.25 for more details
on the returned profile.

6.9.31 Selection.get dopehr profile() — get per-residue DOPE-HR profile

get dopehr profile()

Output: EnergyProfile

This returns the individual residue components of the DOPE-HR score, which can be used to detect poor
regions of the model. See Selection.assess dopehr() for more details on DOPE-HR, and Section 6.25 for
more details on the returned profile.

6.9.32 Selection.assess() — assess a model selection

assess(assessor, output=’SHORT NO REPORT’, **vars)

Output: score

6.9. THE SELECTION CLASS: HANDLING OF SETS OF ATOM COORDINATES 131

This command assesses the quality of the selected atoms in the model using the provided assessor object. Typ-
ically this is used for SOAP scoring, with assessor being soap loop.Scorer() or soap protein od.Scorer().

Assessment uses the standard Modeller energy function, so any of the arguments accepted by
Selection.energy() can also be used here. See Selection.assess dope() for more details on this and
schedule scale.

Any of the assessor objects accepted by this function can also be used for automatic assessment of each
AutoModel or LoopModel model; see Section 2.2.3 or Section 2.3.3 for examples.

Example: examples/assessment/assess soap protein.py

Example for: Selection.assess(), soap_protein_od.Scorer()

from modeller import *

from modeller.scripts import complete_pdb

from modeller import soap_protein_od

env = Environ()

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

Set up SOAP-Protein-OD scoring (note: if assessing multiple models, it is

best to create ’sp’ just once and keep it around, since reading in the

potential from disk can take a long time).

sp = soap_protein_od.Scorer()

Read a model previously generated by Modeller’s AutoModel class

mdl = complete_pdb(env, ’../atom_files/1fdx.B99990001.pdb’)

Select all atoms in the first chain

atmsel = Selection(mdl.chains[0])

Assess with the above Scorer

try:

score = atmsel.assess(sp)

except ModellerError:

print("The SOAP-Protein-OD library file is not included with MODELLER.")

print("Please get it from https://salilab.org/SOAP/.")

https://salilab.org/modeller/examples/assessment/assess_soap_protein.py

132 CHAPTER 6. MODELLER COMMAND REFERENCE

6.10 The physical module: contributions to the objective function

The physical module defines all of the physical restraint types (see Table 6.1). It also defines a physical.Values

class, which allows values for some or all of these types to be specified, for use as energy scaling parameters, cutoffs,
etc.

Please note that the physical restraint types are currently hard-coded into the Modeller program; you cannot
add new types.

6.10.1 physical.Values() — create a new set of physical values

Values(default=1.0, **keys)

This creates a new empty Values object. This is very similar to a Python dictionary; valid keys are ’default’
or any of the objects from Table 6.1. For example, if ’v’ is a new object, you can set the value for the bond
angle contribution to ’0.5’ with ’v[physical.angle] = 0.5’. If you try to read a physical type from
’v’ which is not set, you’ll get v[’default’]. As a convenience, you can set initial values for the default
and/or physical types by passing them as parameters to the ’physical.Values()’ constructor, without the
’physical.’ prefix. For example ’physical.Values(default=1.0, h bond=0.1, coulomb=0.1)’ would
scale all types by 1.0 except for the H bond and Coulomb terms.

Example: See Selection.debug function() command.

https://www.python.org/

6.10. THE PHYSICAL MODULE: CONTRIBUTIONS TO THE OBJECTIVE FUNCTION 133

Python object Index Group

physical.bond 1 Bond length potential
physical.angle 2 Bond angle potential
physical.dihedral 3 Stereochemical cosine dihedral potential
physical.improper 4 Stereochemical improper dihedral potential
physical.soft sphere 5 soft-sphere overlap restraints
physical.lennard jones 6 Lennard-Jones 6–12 potential
physical.coulomb 7 Coulomb point-point electrostatic potential
physical.h bond 8 H-bonding potential
physical.ca distance 9 Distance restraints 1 (Cα–Cα)
physical.n o distance 10 Distance restraints 2 (N–O)
physical.phi dihedral 11 Mainchain Φ dihedral restraints
physical.psi dihedral 12 Mainchain Ψ dihedral restraints
physical.omega dihedral 13 Mainchain ω dihedral restraints
physical.chi1 dihedral 14 Sidechain χ1 dihedral restraints
physical.chi2 dihedral 15 Sidechain χ2 dihedral restraints
physical.chi3 dihedral 16 Sidechain χ3 dihedral restraints
physical.chi4 dihedral 17 Sidechain χ4 dihedral restraints
physical.disulfide distance 18 Disulfide distance restraints
physical.disulfide angle 19 Disulfide angle restraints
physical.disulfide dihedral 20 Disulfide dihedral angle restraints
physical.lower distance 21 X lower bound distance restraints
physical.upper distance 22 X upper bound distance restraints
physical.sd mn distance 23 Distance restraints 3 (SDCH–MNCH)
physical.chi5 dihedral 24 Sidechain χ5 dihedral restraints
physical.phi psi dihedral 25 (Φ,Ψ) binomial dihedral restraints
physical.sd sd distance 26 Distance restraints 4 (SDCH–SDCH)
physical.xy distance 27 Distance restraints 5 (X–Y)
physical.nmr distance 28 NMR distance restraints 6 (X–Y)
physical.nmr distance2 29 NMR distance restraints 7 (X–Y)
physical.min distance 30 Minimal distance restraints
physical.nonbond spline 31 Non-bonded spline restraints
physical.accessibility 32 Atomic accessibility restraints
physical.density 33 Atom density restraints
physical.absposition 34 Absolute position restraints
physical.dihedral diff 35 Dihedral angle difference restraints
physical.gbsa 36 GBSA implicit solvent potential
physical.em density 37 EM density fitting potential
physical.saxs 38 SAXS restraints
physical.symmetry 39 Symmetry restraints

Table 6.1: List of “physical” restraint types.

134 CHAPTER 6. MODELLER COMMAND REFERENCE

6.11 The optimizers module: optimization of the model

The optimizers module provides a number of methods to optimize a model. The molecular pdf is optimized with
respect to the selected coordinates, and the optimized coordinates are returned.

These optimizers are often used to implement the variable target function method, for example in the AutoModel
and LoopModel classes. See Section 6.12 for an example.

6.11.1 ConjugateGradients() — optimize atoms given restraints, with CG

ConjugateGradients(output=’NO REPORT’, min atom shift=0.01, residue span range=(0, 99999),

**vars)

Output: molpdf

Requirements: restraints

This command creates a new Python optimizer object. Calling the object’s optimize method with an atom
selection then performs a number of optimizing iterations using a modified version of the Beale restart con-
jugate gradients method [Shanno & Phua, 1980,Shanno & Phua, 1982]. A brief description of the algorithm
is given in Section A.2.

The optimization can be controlled with a number of keyword arguments, which can be specified either when
the object is created, or when the optimize method is called (if the same keyword is specified in both, that
for the optimize method takes precedence). Valid keywords are:

• min atom shift is a convergence criterion for the optimization. When the maximal atomic shift is less
than the specified value, the optimization is finished regardless of the number of optimization cycles or
function value and its change.

• max iterations is used to prevent a waste of CPU time in the optimization. When that many calls of the
objective function are done, the optimization is finished regardless of the maximal atomic shift. (Note
that each optimization step usually requires more than one call of the objective function.)

• output, if ’REPORT’, writes a summary of the optimization results to the log file after optimization. If
it is ’NO REPORT’, no such report is written.

• edat is an EnergyData object containing objective function parameters, if you do not want to use the
defaults. See Section 6.3 for more information.

• schedule scale specifies scaling factors for the physical restraint types, if you do not want to use the
defaults.

• residue span range determines what atom pairs can possibly occur in the non-bonded atom pairs list
used for dynamic restraints (see Section 5.3).

• actions, if set, should be a list of periodic actions. Each is a Python object containing an ac-
tion which is carried out periodically during the optimization, after every step. For example,
actions.WriteStructure() can be used to write out a PDB file with structure snapshots during the
run, while actions.Trace() writes basic information about the optimization to a trace file. If multiple
actions are given, they are run in the order they are given.

It is useful in some simulations to be able to set EnergyData.contact shell to something large (e.g., 8Å)
and EnergyData.update dynamic to 999999.9, so that the pairs list is prepared only at the beginning of the
optimization. However, you have to make sure that the potential energy is not invisibly pumped into the
system by making contacts that are not on the list of non-bonded pairs (see below).

The optimizemethod, when called, returnsmolpdf, the value of the objective function at the end of optimiza-
tion. An exception is raised if optimization is aborted because dynamic restraints could not be calculated as
a result of a system being too large. It is up to the calling script to ensure that sensible action is taken; e.g.,
skipping the rest of modeling for the model that resulted in an impossible function evaluation. This option is

https://www.python.org/
https://www.python.org/

6.11. THE OPTIMIZERS MODULE: OPTIMIZATION OF THE MODEL 135

useful when calculating several independent models and you do not want one bad model to abort the whole
calculation. A probable reason for an interrupted optimization is that it was far from convergence by the
time the calculation of dynamic restraints was first requested. Two possible solutions are: (1) optimize more
thoroughly (i.e. slowly) and (2) use a different contact pairs routine (set EnergyData.nlogn use = 9999).

Example: examples/scoring/optimize.py

Example for: ConjugateGradients(), MolecularDynamics(), Model.switch_trace()

This will optimize stereochemistry of a given model, including

non-bonded contacts.

from modeller import *

from modeller.scripts import complete_pdb

from modeller.optimizers import ConjugateGradients, MolecularDynamics, actions

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

env.edat.dynamic_sphere = True

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

code = ’1fas’

mdl = complete_pdb(env, code)

mdl.write(file=code+’.ini’)

Select all atoms:

atmsel = Selection(mdl)

Generate the restraints:

mdl.restraints.make(atmsel, restraint_type=’stereo’, spline_on_site=False)

mdl.restraints.write(file=code+’.rsr’)

mpdf = atmsel.energy()

Create optimizer objects and set defaults for all further optimizations

cg = ConjugateGradients(output=’REPORT’)

md = MolecularDynamics(output=’REPORT’)

Open a file to get basic stats on each optimization

trcfil = open(code+’.D00000001’, ’w’)

Run CG on the all-atom selection; write stats every 5 steps

cg.optimize(atmsel, max_iterations=20, actions=actions.Trace(5, trcfil))

Run MD; write out a PDB structure (called ’1fas.D9999xxxx.pdb’) every

10 steps during the run, and write stats every 10 steps

md.optimize(atmsel, temperature=300, max_iterations=50,

actions=[actions.WriteStructure(10, code+’.D9999%04d.pdb’),

actions.Trace(10, trcfil)])

Finish off with some more CG, and write stats every 5 steps

cg.optimize(atmsel, max_iterations=20,

actions=[actions.Trace(5, trcfil)])

mpdf = atmsel.energy()

mdl.write(file=code+’.B’)

https://salilab.org/modeller/examples/scoring/optimize.py

136 CHAPTER 6. MODELLER COMMAND REFERENCE

6.11.2 QuasiNewton() — optimize atoms with quasi-Newton minimization

QuasiNewton(output=’NO REPORT’, min atom shift=0.01, max atom shift=100.0,

residue span range=(0, 99999), **vars)

Output: molpdf

Requirements: restraints

This functions in a very similar way to ConjugateGradients(), but uses a variable metric (quasi-
Newton) method instead to find the minimum. The algorithm implemented in Modeller is the BFGS
or Broyden-Fletcher-Goldfarb-Shanno method [Press et al., 1992]. It takes the same keyword arguments as
ConjugateGradients(), plus one additional max atom shift argument. This is used to limit the maximum
size of an optimization move.

6.11.3 MolecularDynamics() — optimize atoms given restraints, with MD

MolecularDynamics(output=’NO REPORT’, cap atom shift=0.2, md time step=4.0,

init velocities=True, temperature=293.0, md return=’FINAL’, equilibrate=999999,

guide factor=0.0, guide time=0.0, friction=0.0, residue span range=(0, 99999), **vars)

Output: molpdf

Requirements: restraints

This command creates a new Python optimizer object. Calling the object’s optimize method with an
atom selection then performs a molecular dynamics optimization at a fixed temperature. This is the most
basic version of the iterative solver of the Newton’s equations of motion. The integrator uses the Verlet
algorithm [Verlet, 1967]. All atomic masses are set to that of carbon 12. A brief description of the algorithm
is given in Section A.2.

The molecular dynamics optimizer pretends that the natural logarithm of the molecular pdf is energy in
kcal/mole. md time step is the time step in femtoseconds. temperature is the temperature of the system in
Kelvin. max iterations determines the number of MD steps. If md return is ’FINAL’ the last structure is
returned as the MODEL. If md return is ’MINIMAL’ then the structure with the lowest value of the objective
function on the whole trajectory is returned as the MODEL. Rescaling of velocities is done every equilibrate

steps to match the specified temperature. Atomic shifts along one axis are limited by cap atom shift (in
angstroms). This value should be smaller than EnergyData.update dynamic. If init velocities = True, the
velocity arrays are initialized, otherwise they are not. In that case, the final velocities from the previous run
are used as the initial velocities for the current run.

If both guide factor and guide time are non-zero, self-guided molecular dynamics [Wu & Wang, 1999] is carried
out.

See ConjugateGradients() for a description of the other parameters and the edat and actions optional
keyword arguments.

Example: See ConjugateGradients() command.

6.11.4 actions.WriteStructure() — write out the model coordinates

WriteStructure(skip, filepattern, write all atoms=True, first=False, last=False, start=0)

https://www.python.org/

6.11. THE OPTIMIZERS MODULE: OPTIMIZATION OF THE MODEL 137

This action writes out a file containing the current optimizer structure, every skip steps during the optimiza-
tion. It should be specified in the actions argument to an optimizer object (e.g., ConjugateGradients()
or MolecularDynamics()).

filepattern is a C-style format string, used to construct filenames. It should contain a %d format, which is
substituted with the model number (e.g., specifying ’file%d.pdb’ would generate files called ’file0.pdb’,
’file1.pdb’, ’file2.pdb’, etc). The model number will start with start (or 0, if not given).

If write all atoms is True (the default) then all atoms in the model are written out to the structure file,
whether or not they are selected. If False, only selected atoms are written out.

If first is True, then the structure at step 0 (before the optimization) is also written out. If last is True, then
the structure of the last step is written, regardless of whether it is a multiple of skip. By default, both are
False.

Example: See ConjugateGradients() command.

6.11.5 actions.Trace() — write out optimization energies, etc

Trace(skip, output=None)

This action writes out information about the optimization to a trace file every skip steps, starting with the
state just before the optimization (step 0). The type of information depends on the type of optimization
being carried out, but generally includes the iteration number, energy values, and atomic shifts.

output can be a standard Python file object, to which the trace is written, or a file name. In the latter
case, a file with that name is created (overwriting any existing file). If output is not specified, the trace is
written to the logfile instead.

Example: See ConjugateGradients() command.

6.11.6 actions.CHARMMTrajectory() — write out a CHARMM trajectory

CHARMMTrajectory(skip, filename, first=False, last=False)

This action writes out a trajectory file in Charmm or X-PLOR format. This is more efficient than
actions.WriteStructure(), as binary files are smaller than multiple PDB files, and only the moving (se-
lected) atom coordinates are written at each step after the first. Binary trajectory files can be read in by
visualization software such as Chimera or VMD. 6 You will typically also need a Charmm-format PSF file
to accompany the trajectory, which you can obtain with Model.write psf().

To use, create a charmm trajectory object, and pass it in the actions argument to an optimizer object (e.g.,
ConjugateGradients() or MolecularDynamics()).

If first is True, then the structure at step 0 (before the optimization) is also written out. If last is True, then
the structure of the last step is written, regardless of whether it is a multiple of skip. By default, both are
False.

Example: examples/python/trajectory.py

Example for PSF and binary trajectory output

from modeller import *

from modeller.scripts import complete_pdb

from modeller.optimizers import MolecularDynamics, actions

env = Environ()

6Note that binary trajectory files are machine dependent; it is up to the visualization software to do any necessary byte-swapping.

https://www.python.org/
https://www.cgl.ucsf.edu/chimera/
https://www.ks.uiuc.edu/Research/vmd/
https://salilab.org/modeller/examples/python/trajectory.py

138 CHAPTER 6. MODELLER COMMAND REFERENCE

env.io.atom_files_directory = [’../atom_files’]

env.edat.dynamic_sphere = True

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

code = ’1fas’

mdl = complete_pdb(env, code)

Stereochemical restraints on all atoms:

atmsel = Selection(mdl)

mdl.restraints.make(atmsel, restraint_type=’stereo’, spline_on_site=False)

Write a PSF

mdl.write_psf(code+’.psf’)

Run 100 steps of MD, writing a CHARMM binary trajectory every 5 steps

md = MolecularDynamics(output=’REPORT’)

md.optimize(atmsel, temperature=300, max_iterations=100,

actions=actions.CHARMMTrajectory(5, filename=code+’.dcd’))

6.11.7 User-defined optimizers

The optimizers module also provides a StateOptimizer class. This class cannot be directly used to optimize the
system, but instead it can be used as a base for you to write your own optimization algorithms in Python. To do
this, create a subclass and override the optimize method to do your optimization. Your optimizer does not act
directly on the atom coordinates, but instead gets a ‘state’ vector with the same number of elements as there are
degrees of freedom in the system. (This allows you to also optimize rigid bodies, for example, without having to
worry about the specifics of their representation.)

Several utility functions are provided:

• ’self.get state()’: returns a state vector representing the current state of the system (x,y,z coordinates
of all non-rigid atoms in the selection, and center of mass and rotation angles of all selected rigid bodies).

• ’self.energy(state)’: given a state vector, returns the system energy and a similar vector of state gradi-
ents. Also updates the atom shifts self.shiftavr and self.shiftmax from the previous state.

• ’self.next step()’: updates the step counter self.step, and does any periodic actions, if defined.

• ’self.finish()’: does any cleanup at the end of the optimization.

If you want to define parameters for your optimization in the same way as the other optimizers, set ’ ok keys’

appropriately and then call self.get parameter() to get their values.

Example: examples/python/steepest descent.py

from modeller.optimizers import StateOptimizer

class SteepestDescent(StateOptimizer):

"""Very simple steepest descent optimizer, in Python"""

Add options for our optimizer

_ok_keys = StateOptimizer._ok_keys + (’min_atom_shift’, ’min_e_diff’,

’step_size’, ’max_iterations’)

def __init__(self, step_size=0.0001, min_atom_shift=0.01, min_e_diff=1.0,

https://www.python.org/
https://salilab.org/modeller/examples/python/steepest_descent.py

6.11. THE OPTIMIZERS MODULE: OPTIMIZATION OF THE MODEL 139

max_iterations=None, **vars):

StateOptimizer.__init__(self, step_size=step_size,

min_atom_shift=min_atom_shift,

min_e_diff=min_e_diff,

max_iterations=max_iterations, **vars)

def optimize(self, atmsel, **vars):

Do normal optimization startup

StateOptimizer.optimize(self, atmsel, **vars)

Get all parameters

alpha = self.get_parameter(’step_size’)

minshift = self.get_parameter(’min_atom_shift’)

min_ediff = self.get_parameter(’min_e_diff’)

maxit = self.get_parameter(’max_iterations’)

Main optimization loop

state = self.get_state()

(olde, dstate) = self.energy(state)

while True:

for i in range(len(state)):

state[i] -= alpha * dstate[i]

(newe, dstate) = self.energy(state)

if abs(newe - olde) < min_ediff:

print("Finished at step %d due to energy criterion" % self.step)

break

elif self.shiftmax < minshift:

print("Finished at step %d due to shift criterion" % self.step)

break

elif maxit is not None and self.step >= maxit:

print("Finished at step %d due to step criterion" % self.step)

break

if newe < olde:

alpha *= 2

else:

alpha /= 2

olde = newe

self.next_step()

self.finish()

Example: examples/python/steepest descent test.py

from modeller import *

from modeller.optimizers import actions

from modeller.scripts import complete_pdb

Load our custom steepest descent optimizer

from steepest_descent import SteepestDescent

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

https://salilab.org/modeller/examples/python/steepest_descent_test.py

140 CHAPTER 6. MODELLER COMMAND REFERENCE

Read in the initial structure:

code = ’1fdn’

mdl = complete_pdb(env, code)

atmsel = Selection(mdl)

Generate the restraints:

mdl.restraints.make(atmsel, restraint_type=’stereo’, spline_on_site=False)

Optimize with our custom optimizer:

opt = SteepestDescent(max_iterations=80)

opt.optimize(atmsel, actions=actions.Trace(5))

6.12. THE SCHEDULE CLASS: VARIABLE TARGET FUNCTION OPTIMIZATION 141

6.12 The Schedule class: variable target function optimization

The Schedule class is used for variable target function optimization (the initial optimization used by the AutoModel
class).

6.12.1 Schedule() — create a new schedule

Schedule(last scales, steps)

This creates a new Schedule object, which can contain multiple schedule steps, given by the list steps. Each
step then defines some of the optimization parameters: (1) the optimization method; (2) maximal number
of residues that the restraints are allowed to span (Section 6.7.7); (3) the individual scaling factors for all
the physical restraint types. last scales is used by Schedule.make for model().

The usual schedule for the variable target function part of optimization in comparative modeling is as follows.
The residue range (Restraints.pick() and Section 6.7.7) is increased with increasingly larger steps until the
protein length is reached. The scaling of homology-derived and bonded stereochemical restraints increases
from a small value to 1 in the initial few steps to allow for imperfect starting geometries, especially those that
result from Selection.randomize xyz() and long insertions or deletions. (For AutoModel, the restraints
are additionally scaled by Environ.schedule scale. This is useful when template-derived fold restraints have to
be weakened relative to some external restraints, so that the fold can actually reflect these external restraints,
even when they are quite different from the template-derived restraints.) The soft-sphereoverlap restraints
are slowly introduced only in the last four steps of the variable target function method to save CPU time
and increase the radius of convergence.

In comparative modeling by the AutoModel class in the default mode, the variable target function method is
usually followed by simulated annealing with molecular dynamics. In this last stage, all homology-derived and
stereochemical restraints are generally used scaled only by Environ.schedule scale. Thus, it is recommended
that if you define your own schedule, the scaling factors for the last step are all 1, so that the energy surface
followed in optimization is continuous.

There are a number of variables defined in the AutoModel class that can be used to influence the thoroughness
of both the variable target function and molecular dynamics parts of the optimization; see Section 2.2.2.

Example: examples/commands/make schedule.py

This will create a VTFM optimization schedule and then

use it to optimize the model

from modeller import *

from modeller.scripts import complete_pdb

Load in optimizer and schedule support

from modeller import schedule, optimizers

log.verbose()

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

env.edat.dynamic_sphere = True

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

code = ’1fas’

mdl = complete_pdb(env, code)

Generate the restraints:

https://salilab.org/modeller/examples/commands/make_schedule.py

142 CHAPTER 6. MODELLER COMMAND REFERENCE

atmsel = Selection(mdl)

mdl.restraints.make(atmsel, restraint_type=’stereo’, spline_on_site=False)

Create our own library schedule:

5 steps of conjugate gradients (CG), each step using a larger

residue range (2 up to 9999) and energy scaling factor (0.01 up to 1.0),

followed by 3 steps of molecular dynamics (MD) at successively lower

temperature. The scaling factors for the last 5 steps are always retained.

CG = optimizers.ConjugateGradients

MD = optimizers.MolecularDynamics

libsched = schedule.Schedule(5,

[schedule.Step(CG, 2, physical.Values(default=0.01)),

schedule.Step(CG, 5, physical.Values(default=0.1)),

schedule.Step(CG, 10, physical.Values(default=0.2)),

schedule.Step(CG, 50, physical.Values(default=0.5)),

schedule.Step(CG, 9999, physical.Values(default=1.0)),

schedule.Step(MD(temperature=300.), 9999, \

physical.Values(default=1.0)),

schedule.Step(MD(temperature=200.), 9999, \

physical.Values(default=1.0)),

schedule.Step(MD(temperature=100.), 9999, \

physical.Values(default=1.0))])

Make a trimmed schedule suitable for our model, and scale it by schedule_scale

mysched = libsched.make_for_model(mdl) * env.schedule_scale

Write the trimmed schedule to a file

fh = open(code+’.sch’, ’w’)

mysched.write(fh)

fh.close()

Optimize for all steps in the schedule

for step in mysched:

step.optimize(atmsel, output=’REPORT’, max_iterations=200)

mdl.write(file=code+’.B’)

6.12.2 Schedule.make for model() — trim a schedule for a model

make for model(mdl)

This takes the input schedule, and returns a new schedule, trimmed to the right length for mdl. Schedule
steps are taken from the input schedule in order, finishing when the first step with a residue range greater
than or equal to the number of residues in mdl is reached, unless the range is 9999. The value of last scales
for the input schedule is also considered; the last last scales entries in the new schedule will always have the
same scaling factors as the last last scales entries in the input schedule, even if trimming occurred.

Example: See Schedule() command.

6.12.3 Schedule.write() — write optimization schedule

write(fh)

6.12. THE SCHEDULE CLASS: VARIABLE TARGET FUNCTION OPTIMIZATION 143

This command writes out the schedule for the variable target function method to the given file or file handle
(see modfile.File()), fh.

Example: See Schedule() command.

144 CHAPTER 6. MODELLER COMMAND REFERENCE

6.13 The GroupRestraints class: restraints on atom groups

The GroupRestraints class holds classifications of atoms into classes/groups, and restraints which act on certain
atom groups. Such restraints are used, for example, for the statistical potentials (such as DOPE) used for loop
modeling. These restraints are only calculated if EnergyData.dynamic modeller is set to True.

6.13.1 GroupRestraints() — create a new set of group restraints

GroupRestraints(env, classes, parameters=None)

This creates a new set of group restraints. The set is initialized by reading in classes, a file containing a
classification of residue:atom pairs into groups. If the parameters argument is also given, this is used to read
in a file of restraint parameters, using GroupRestraints.append().

classes can be either a file name or a readable file handle (see modfile.File()).

Example: examples/commands/group restraints.py

Example for: GroupRestraints()

from modeller import *

from modeller.scripts import complete_pdb

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

Allow calculation of statistical (dynamic_modeller) potential

env.edat.dynamic_modeller = True

mdl = complete_pdb(env, "1fas")

Read Fiser/Melo loop modeling potential

gprsr = GroupRestraints(env, classes=’$(LIB)/atmcls-melo.lib’,

parameters=’$(LIB)/melo1-dist.lib’)

Read DOPE loop modeling potential

#gprsr = GroupRestraints(env, classes=’$(LIB)/atmcls-mf.lib’,

parameters=’$(LIB)/dist-mf.lib’)

Read DOPE-HR loop modeling potential

#gprsr = GroupRestraints(env, classes=’$(LIB)/atmcls-mf.lib’,

parameters=’$(LIB)/dist-mfhr.lib’)

Use this potential for the 1fas model

mdl.group_restraints = gprsr

Evaluate the loop score of PDB residues 1 through 10 in chain A

atmsel = Selection(mdl.residue_range(’1:A’, ’10:A’))

atmsel.energy()

6.13.2 GroupRestraints.append() — read group restraint parameters

append(file)

https://salilab.org/modeller/examples/commands/group_restraints.py

6.13. THE GROUPRESTRAINTS CLASS: RESTRAINTS ON ATOM GROUPS 145

This reads a set of parameters from file, which should act on the atom classes previously defined. Any
parameters read are added to any already in this object (to clear them all, simply create a new object).
The format of the group restraints file is the same as the MODELLER restraints format (see Section 5.3.1)
except that rather than numeric atom indices, atom group names (as defined in the classes file) are used.
These restraints are further limited, in that they can act only on 1 or 2 atoms.

file can be either a file name or a readable file handle (see modfile.File()).

146 CHAPTER 6. MODELLER COMMAND REFERENCE

6.14 The gbsa module: implicit solvation

The gbsa module provides methods for scoring models with GB/SA implicit solvation. This is primarily used by
the DOPELoopModel() class.

Born radii are calculated using the mAGB method [Gallicchio & Levy, 2004].

6.14.1 gbsa.Scorer() — create a new scorer to evaluate GB/SA energies

Scorer(library=’$LIB/solv.lib’, solvation model=1, cutoff=8.0)

This creates a new class to be used for scoring models with the GB/SA implicit solvation model. To activate
scoring, you must add an instance of this class to the relevant EnergyData.energy terms list, in the same way
as for user-defined energy terms (see Section 7.1.3).

library is the name of a library file containing radii and solvation parameters for all atom types. solvation model

selects which column of solvation parameters to use from this file. cutoff sets the distance in angstroms used
to calculate the Born radii; the calculation can be made faster at the expense of accuracy by using a smaller
cutoff. Note that GB/SA uses the same nonbonded list as the other dynamic terms, so cutoff should be chosen
to be no greater than EnergyData.contact shell. The electrostatic component of GB/SA is also switched using
the value of EnergyData.coulomb switch.

Example: examples/scoring/gbsa.py

Example for: gbsa.scorer()

This will calculate the GB/SA implicit solvation energy for a model.

from modeller import *

from modeller import gbsa

from modeller.scripts import complete_pdb

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

Calculate just the GB/SA score; turn off soft-sphere

env.edat.dynamic_sphere = False

env.edat.energy_terms.append(gbsa.Scorer())

GB/SA falls off slowly with distance, so a larger cutoff than the

default (4.0) is recommended

env.edat.contact_shell = 8.0

mdl = complete_pdb(env, "1fas")

Select all atoms

atmsel = Selection(mdl)

Calculate the energy

atmsel.energy()

https://salilab.org/modeller/examples/scoring/gbsa.py

6.15. SOAP POTENTIALS 147

6.15 SOAP potentials

Modeller includes a number of statistically optimized atomic potentials (SOAP) [Dong et al., 2013]. Individual
potentials are optimized for scoring and assessing protein-protein interfaces (soap pp), loops (soap loop), protein-
peptide interactions (soap peptide), and protein structures (soap protein od).

6.15.1 soap loop.Scorer() — create a new scorer to evaluate SOAP-Loop energies

Scorer(library=’$LIB/soap loop.hdf5’, group=physical.xy distance)

This creates a new class to be used for assessing or scoring models with SOAP-Loop.

For assessing models (i.e., a one-time score for each model after optimization is complete), simply assign an
instance of this class to AutoModel.assess methods or LoopModel.loop.assess methods (see Section 2.3.3 for an
example). For manual assessment, see Selection.assess().

To add to the energy function (e.g., to use in optimization, which is not usually what you want), you must
add an instance of this class to the relevant EnergyData.energy terms list, in the same way as for user-defined
energy terms (see Section 7.1.3). (Note that the default value of 4.0 for EnergyData.contact shell is too small
to be used with SOAP scores. Set it to the undefined value (-999) to be sure not to discard SOAP statistics
for longer distances.)

library is the name of the SOAP-Loop library. This library is not included with the Modeller distribution
due to size (it is roughly 500MB) but can be downloaded from the SOAP web site.

SOAP-Loop is an orientation-dependent potential. It can only reliably be used for scoring (not optimization)
as its first derivatives are zero.

6.15.2 soap peptide.Scorer() — create a new scorer to evaluate SOAP-Peptide en-
ergies

Scorer(library=’$LIB/soap peptide.hdf5’, group=physical.xy distance)

See soap loop.Scorer() for more details.

SOAP-Peptide is an orientation-dependent potential. It can only be used for scoring (not optimization) as
its first derivatives are zero.

6.15.3 soap pp.PairScorer() — create a new scorer to evaluate SOAP-PP pairwise
energies

PairScorer(library=’$LIB/soap pp pair.hdf5’, group=physical.xy distance)

The SOAP-PP potential includes two terms — a pairwise term that scores pairs of atoms that span the
protein-protein interface, and an atomic term that scores all atoms for solvent accessibility. Both are typically
used for SOAP-PP scoring. The libraries for both are included with Modeller.

This pairwise term depends only on distance (it is not orientation-dependent) and supports first derivatives.

6.15.4 soap pp.AtomScorer() — create a new scorer to evaluate SOAP-PP atomistic
energies

AtomScorer(library=’$LIB/soap pp atom.hdf5’, group=physical.accessibility)

https://salilab.org/SOAP/

148 CHAPTER 6. MODELLER COMMAND REFERENCE

See soap pp.PairScorer() for more details.

Note that this term can only be used for scoring (not optimization) as its first derivatives are zero.

6.15.5 soap pp.Assessor() — assess with all components of the SOAP-PP score

Assessor(pair library=’$LIB/soap pp pair.hdf5’, pair group=physical.xy distance,

atom library=’$LIB/soap pp atom.hdf5’, atom group=physical.accessibility)

This is a convenience class that can be used to assess models (see soap loop.Scorer() for more details)
using both components of the SOAP-PP score, soap pp.AtomScorer() and soap pp.PairScorer().

6.15.6 soap protein od.Scorer() — create a new scorer to evaluate SOAP-Protein-
OD energies

Scorer(library=’$LIB/soap protein od.hdf5’, group=physical.xy distance)

See soap loop.Scorer() for more details.

SOAP-Protein-OD is an orientation-dependent potential. It can only be used for scoring (not optimization)
as its first derivatives are zero.

This can also be used for manual assessment (see Selection.assess()) or automatic assessment of AutoModel
models (see Section 2.2.3).

6.16. THE ALIGNMENT CLASS: COMPARISON OF SEQUENCES AND STRUCTURES 149

6.16 The Alignment class: comparison of sequences and structures

This section describes the commands for reading, writing, making, analyzing and using the alignments of sequences
and structures (pairwise and multiple). For the underlying dynamic programming methods see Section A.1.

An Alignment object acts like a regular Python list, where each element in the list represents a sequence in
the alignment, as a Sequence object (see Section 6.17). The list can be indexed in standard Python fashion or by
alignment code. Thus, given an Alignment object aln, len(aln) gives the number of sequences in the alignment,
aln[0] the first sequence, aln[-1] the last sequence, and aln[’1abcA’] the sequence with alignment code ’1abcA’.

6.16.1 Alignment() — create a new alignment

Alignment(env, **vars)

This creates a new Alignment object; by default, this contains no sequences. If any keyword arguments are
given, they are passed to the Alignment.append() function to create the initial alignment.

6.16.2 Alignment.comments — alignment file comments

This is a list of all alignment file comments. If adding or changing comments, make sure to keep the required
prefix (’C;’ for PIR files).

6.16.3 Alignment.positions — list of residue-residue alignment positions (including
gaps)

This is a list of all ’positions’ in the alignment. Unlike individual sequences in the alignment (see Section 6.17),
which are lists of the residues in those sequences (not including gaps) the ’positions’ correspond to columns
in the alignment file, including gaps. Each element in the list contains a method get residue(seq) which,
given a sequence in the same alignment, returns the residue in that sequence which is aligned at that position,
or None if a gap is present.

Note that chain breaks are considered to have zero width, and thus fall ’between’ alignment positions; they
do not count as alignment positions.

6.16.4 Alignment.append() — read sequences and/or their alignment

append(file, align codes=’all’, atom files=None, remove gaps=True, alignment format=’PIR’,

io=None, allow alternates=False)

Output: end of file

This command reads the sequence(s) and/or their alignment from a text file. Only sequences with the
specified codes are read in; align codes = ’all’ can be used to read all sequences. The sequences are added
to any currently in the alignment.

file can be either a file name or a readable file handle (see modfile.File()).

There are several alignment formats:

1. The ’PIR’ format resembles that of the PIR sequence database. It is described in Section B.1 and is
used for comparative modeling because it allows for additional data about the proteins that are useful
for automated access to the atomic coordinates.

2. The ’FASTA’ format resembles the ’PIR’ format but has a missing second ‘comment’ line and a missing
star at the end of each sequence.

https://www.python.org/

150 CHAPTER 6. MODELLER COMMAND REFERENCE

3. The ’PAP’ format is nicer to look at but contains less information and is not used by other programs.
When used in conjunction with PDB files, the PDB files must contain exactly the residues in the
sequences in the ’PAP’ file; i.e., it is not possible to use only a segment of a PDB file. In addition, the
’PAP’ protein codes must be expandable into proper PDB atom filenames, as described in Section 5.1.3.
Alternatively, a list of PDB file names can be specified with the atom files parameter, in the same order
as the sequences read from the alignment file. (atom files is not used for other alignment formats.) The
protein sequence can now start in any column (this was limited to column 11 before release 5).

4. The ’QUANTA’ format can be used to communicate with the Quanta program. You are not supposed
to mix ’QUANTA’ format with any other format because the ’QUANTA’ format contains residue numbers
which do not occur in the other formats and are difficult to guess correctly. Modeller can write out
alignments in the ’QUANTA’ format but cannot read them in.

5. The ’INSIGHT’ format is very similar to the ’PAP’ format and can sometimes be used to communicate
with the InsightII program. When used in conjunction with PDB files, the same rules as for the ’PAP’
format apply.

6. The ’PSS’ format is in the .horiz format used by PSI-PRED to report secondary structure predictions
of sequences. A confidence of the prediction is also reported as an integer value between 0 and 9 (high).

If remove gaps = True, positions with gaps (or whitespace) in all selected sequences are removed from the
alignment.

The io argument is required since PIR files can contain empty sequences or ranges; in this case, the sequence
or range is read from the corresponding PDB file.

If allow alternates = True, and reading a ’PIR’ file where ‘.’ is used to force Modeller to read the sequence
range from the corresponding PDB file (see Section B.1), then the search for matches between the alignment
sequence and PDB is made a little more flexible. Not only will an exact equivalence of one-letter codes be
considered a match, but each residue’s alternate (as defined by the STD column in ’modlib/restyp.lib’)
will also count as a match; for example, B (ASX) in the alignment will be considered a match for N (ASN)
in the PDB, while G (GLY) in the alignment will match any non-standard residue in the PDB for which an
explicit equivalence has not been defined (the DEFATM behavior in ’modlib/restyp.lib’). The alignment
sequence will be modified to match the exact sequence from the PDB. This is useful if the alignment sequence
is extracted from a database containing ’cleaned’ sequences, e.g. that created by SequenceDB.read().

For ’PIR’ and ’FASTA’ files, the end of file variable is set to 1 if Modeller reached the end of the file
during the read, or 0 otherwise.

This command can raise a FileFormatError if the alignment file format is invalid, or a
SequenceMismatchError if a ’PIR’ sequence does not match that read from PDB (when an empty range is
given).

Example: examples/commands/read alignment.py

Example for: Alignment.append(), Alignment.write(),

Alignment.check()

Read an alignment, write it out in the ’PAP’ format, and

check the alignment of the N-1 structures as well as the

alignment of the N-th sequence with each of the N-1 structures.

from modeller import *

log.level(output=1, notes=1, warnings=1, errors=1, memory=0)

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

aln = Alignment(env)

aln.append(file=’toxin.ali’, align_codes=’all’)

aln.write(file=’toxin.pap’, alignment_format=’PAP’)

aln.write(file=’toxin.fasta’, alignment_format=’FASTA’)

aln.check()

https://salilab.org/modeller/examples/commands/read_alignment.py

6.16. THE ALIGNMENT CLASS: COMPARISON OF SEQUENCES AND STRUCTURES 151

6.16.5 Alignment.clear() — delete all sequences from the alignment

clear()

This deletes all of the sequences from the alignment. It is not exactly the same as deleting the alignment
object and creating a new one, since any structural data already read in remains in the alignment object.
This is useful if the sequences are reread and the structural information needs to be reused.

6.16.6 Alignment.read one() — read sequences one by one from a file

read one(file, remove gaps=False, alignment format=’PIR’, io=None, allow alternates=False)

Output: True only if a sequence was read

This reads a single sequence from an open alignment file into the current alignment. This is useful, for
example, when dealing with a very large database of sequences, which you do not want to read into memory
in its entirety. The sequences can then be processed individually.

On exit, True is returned if a sequence was read. The read sequence is the only sequence in the final alignment
(anything in the alignment before calling this method is erased). If the end of the file was reached without
reading a sequence, False is returned.

Arguments are as for Alignment.append(). Note that only ’PIR’ or ’FASTA’ format files can be read
with this command. file should be an open file handle (see modfile.File()). Since only a single sequence is
read, if remove gaps is True, all gaps in the sequence are removed, regardless of whether they are aligned
with other sequences in the alignment file.

This command can raise a FileFormatError if the alignment file format is invalid, or a
SequenceMismatchError if a ’PIR’ sequence does not match that read from PDB (when an empty range is
given).

Example: examples/commands/alignment read one.py

Example for: Alignment.read_one()

from modeller import *

env = Environ()

Create an empty alignment

aln = Alignment(env)

Open the input alignment file, and get a handle to it:

input = modfile.File(’toxin.ali’, ’r’)

Same for the output file:

output = modfile.File(’toxin-filter.ali’, ’w’)

Read sequences one by one from the file handle in PIR format:

while aln.read_one(input, alignment_format=’PIR’):

print("Read code %s" % aln[0].code)

Write only X-ray structures to the output file:

if aln[0].prottyp == ’structureX’:

aln.write(output, alignment_format=’FASTA’)

https://salilab.org/modeller/examples/commands/alignment_read_one.py

152 CHAPTER 6. MODELLER COMMAND REFERENCE

Explicitly close the files (not strictly necessary in this simple

example, because they’ll be closed at the end of the script anyway):

input.close()

output.close()

6.16.7 Alignment.check structure structure() — check template structure superpo-
sitions

check structure structure(eqvdst=6.0, io=None)

Output: n exceed

This command checks the alignment of the template structures (all but the last entry in the alignment): For
each pairwise superposition of the templates, it reports those equivalent pairs of Cα atoms that are more
than eqvdst Å away from each other. Such pairs are almost certainly misaligned. The pairwise superpositions
are done using the Cα atoms and the given alignment. The number of such pairs is returned.

Note that the target structures are actually changed by the superpositions carried out by this command. If
you want to use these superpositions as a crude initial model for AutoModel model building (rather than
setting AutoModel.initial malign3d) please bear in mind that the later templates in your alignment are always
fitted on the earlier templates. Thus, a more reliable initial model will be obtained if you list the higher
coverage templates earlier in the knowns variable in your AutoModel script (e.g., always list multimeric
templates before monomers).

If you want to use the original non-superposed structures, either avoid calling this command, or delete and
recreate the alignment object afterwards to force it to reread the structure files.

6.16.8 Alignment.check sequence structure() — check sequence/structure align-
ment for sanity

check sequence structure(gapdist=8.0, io=None)

Output: n exceed

This command checks the alignment of the target sequence (the last entry in the alignment) with each of the
templates: For all consecutive pairs of Cα atoms within each chain in the target, it calculates the distance
between the two equivalent Cα atoms in each of the templates. If the distance is longer than gapdist Å, it is
reported. In such a case, the alignment between the template and the target is almost certainly incorrect.
The total number of exceeded pair distances is returned.

6.16.9 Alignment.check() — check alignment for modeling

check(io=None)

This command evaluates an alignment to be used for comparative modeling, by calling
Alignment.check structure structure() and Alignment.check sequence structure().

Example: examples/commands/read alignment.py

https://salilab.org/modeller/examples/commands/read_alignment.py

6.16. THE ALIGNMENT CLASS: COMPARISON OF SEQUENCES AND STRUCTURES 153

Example for: Alignment.append(), Alignment.write(),

Alignment.check()

Read an alignment, write it out in the ’PAP’ format, and

check the alignment of the N-1 structures as well as the

alignment of the N-th sequence with each of the N-1 structures.

from modeller import *

log.level(output=1, notes=1, warnings=1, errors=1, memory=0)

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

aln = Alignment(env)

aln.append(file=’toxin.ali’, align_codes=’all’)

aln.write(file=’toxin.pap’, alignment_format=’PAP’)

aln.write(file=’toxin.fasta’, alignment_format=’FASTA’)

aln.check()

6.16.10 Alignment.compare with() — compare two alignments

compare with(aln)

Output: Percent residue-residue equivalence

This command compares two pairwise alignments read by the Alignment.append() commands. The
alignment of the first sequence with the second sequence in aln is evaluated with respect to the current
alignment. The numbers are not symmetric; i.e., they will change if the sequences or alignments are swapped.
The output in the log file is self-explanatory. The percentage of equivalent residue-residue pairs in the two
alignments is returned.

Example: examples/commands/compare alignments.py

Example for: Alignment.compare_with(), Alignment.append_model()

Compare two alignments of two proteins each. In this case, the first

alignment is a sequence-sequence alignment and the second alignment

is a structure-structure alignment.

from modeller import *

log.level(1, 1, 1, 1, 0)

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

Generate and save sequence-sequence alignment:

aln = Alignment(env)

for code in (’1fas’, ’2ctx’):

mdl = Model(env, file=code)

aln.append_model(mdl=mdl, align_codes=code, atom_files=code)

aln.align(gap_penalties_1d=(-600, -400))

aln.write(file=’toxin-seq.ali’)

Generate and save structure-structure alignment:

https://salilab.org/modeller/examples/commands/compare_alignments.py

154 CHAPTER 6. MODELLER COMMAND REFERENCE

aln.align3d(gap_penalties_3d=(0, 2.0))

aln.write(file=’toxin-str.ali’)

Compare the two pairwise alignments:

aln = Alignment(env, file=’toxin-seq.ali’, align_codes=’all’)

aln2 = Alignment(env, file=’toxin-str.ali’, align_codes=’all’)

aln.compare_with(aln2)

6.16.11 Alignment.append model() — copy model sequence and coordinates to
alignment

append model(mdl, align codes, atom files=’’)

This command adds the sequence and coordinates of the given model, mdl, to the end of the current alignment.

You should additionally set align codes and atom files to the PDB ID and file name, respectively. This
information is added to the alignment with the new sequence. (Alternatively, you can set this information
later by setting Sequence.code and Sequence.atom file.)

This command can raise a ValueError if the align code is too long (see Sequence.code.)

Example: examples/commands/aln append model.py

This demonstrates one way to generate an initial alignment between two

PDB sequences. It can later be edited by hand.

Set Modeller environment (including search patch for Model.read())

from modeller import *

env = Environ()

env.io.atom_files_directory = [".", "../atom_files/"]

Create a new empty alignment and model:

aln = Alignment(env)

mdl = Model(env)

Read the whole 1fdn atom file

code=’1fdn’

mdl.read(file=code, model_segment=(’FIRST:@’, ’END:’))

Add the model sequence to the alignment

aln.append_model(mdl, align_codes=code, atom_files=code)

Read 5fd1 atom file chain A from 1-63, and add to alignment

code=’5fd1’

mdl.read(file=code, model_segment=(’1:A’, ’63:A’))

aln.append_model(mdl, align_codes=code, atom_files=code)

Align them by sequence

aln.malign(gap_penalties_1d=(-500, -300))

aln.write(file=’fer1-seq.ali’)

Align them by structure

aln.malign3d(gap_penalties_3d=(0.0, 2.0))

https://salilab.org/modeller/examples/commands/aln_append_model.py

6.16. THE ALIGNMENT CLASS: COMPARISON OF SEQUENCES AND STRUCTURES 155

check the alignment for its suitability for modeling

aln.check()

aln.write(file=’fer1.ali’)

6.16.12 Alignment.append sequence() — add a sequence from one-letter codes

append sequence(sequence, blank single chain=False, zero width break=False)

This builds a new sequence from the provided one-letter codes, and adds it to the end of the alignment. You
can also use ’-’ and ’/’ characters in this sequence to add gaps and chain breaks.

By default, the newly created chains are labeled ’A’, ’B’, ’C’ and so on. However, if only one chain is
generated, and blank single chain is set True, it is given a blank chain ID.

Internally, a chain break is not a residue (it is essentially a signal to not construct a peptide bond between
adjacent residues) and so has ”zero width”. However, the ’/’ character has a width of one just like a residue
or a gap. To simplify alignment construction, if zero width break is False (the default), a gap is also added
to the alignment when a chain break is encountered, so that other sequences will align. For example, after
appending the two sequences AC/G and ETPW, G will align with W by default, or with P if zero width break is
set to True.

Example: See Model.build sequence() command.

6.16.13 Alignment.append profile() — add profile sequences to the alignment

append profile(prf)

This adds all the sequences from the given profile, prf, to the alignment. It is similar in operation to
Profile.to alignment().

6.16.14 Alignment.write() — write sequences and/or their alignment

write(file, alignment format=’PIR’, alignment features=’INDICES CONSERVATION’, align block=0,

align alignment=False)

This command writes the whole alignment to a text file.

file can be either a file name or a writeable file handle (see modfile.File()).

alignment format selects the format to write the alignment in; see Alignment.append().

The ’PAP’ format, which corresponds to a relatively nice looking alignment, has several additional format-
ting options that can be selected by the alignment features variable. This scalar variable can contain any
combination of the following keywords:

• ’INDICES’, the alignment position indices;

• ’CONSERVATION’, a star for each absolutely conserved position;

• ’ACCURACY’, the alignment accuracy indices, scaled between 0–9, as calculated by
Alignment.consensus();

• ’HELIX’, average content of helical residues for structures 1 – align block at each position, 0 for 0% and
9 for 100%, as calculated by Alignment.align2d().

156 CHAPTER 6. MODELLER COMMAND REFERENCE

• ’BETA’, average content of β-strand residues for structures 1 – align block at each position, 0 for 0%
and 9 for 100%, as calculated ‘by Alignment.align2d().

• ’ACCESSIBILITY’, average relative sidechain buriedness for structures 1 – align block, 0 for 0% (100%
accessibility) and 9 for 100% (0% accessibility), as calculated by Alignment.align2d();

• ’STRAIGHTNESS’, average mainchain straightness structures 1 – align block at each position 0 for 0%
and 9 for 100%, as calculated by Alignment.align2d().

• ’PRED SS’, predicted secondary structure (H,E,C)

• ’CONF SS’, confidence of predicted secondary structure (0(low) - 9(high))

Options ’HELIX’, ’BETA’, ’ACCESSIBILITY’, and ’STRAIGHTNESS’ are valid only after executing command
Alignment.align2d(), where the corresponding quantities are defined. They refer to the 3D profile defined
for the first align block structures (run Alignment.align2d() with fit = False to prepare these struc-
tural data without changing the input alignment). Similarly, the ’ACCURACY’ option is valid only after the
Alignment.consensus() command. Options ’PRED SS’ and ’CONF SS’ are best exercised after reading in
a ”.PSS” file of secondary structure predictions. In the case of multiple sequences, it may be necessary to
use the command Sequence.transfer res prop() first.

align alignment and align block are used to ensure correct indication of identical alignment positions, depend-
ing on whether sequences or two blocks of sequences were aligned: For sequences (align alignment = False

and align block is ignored), a ’*’ indicating a conserved position is printed where all sequences have the
same residue type. For blocks (align alignment = True and align block indicates the last sequence of the first
block), a ’*’ is printed only where the two blocks have the same order of residue types (there has to be
the same number of sequences in both blocks). The blocks option is useful when comparing two alignments,
possibly aligned by the Alignment.align() command.

Example: See Alignment.append() command.

6.16.15 Alignment.edit() — edit overhangs in alignment

edit(overhang, edit align codes, base align codes, min base entries, by chain=False, io=None)

This command edits the overhangs in the alignment.

edit align codes specifies the alignment codes for the alignment entries whose overhangs are to be cut; in
addition, all or last can be used.

base align codes specifies the alignment codes for the alignment entries that are used to determine the extent
of the overhangs to be cut from the edited entries; in addition, all or rest (relative to edit align codes) can
be used.

The same entries can be cut and used for determining the base.

The base of the alignment is determined by the first and last alignment positions that have at least
min base entries entries that started by that position, beginning from the first and last alignment positions,
respectively.

The cuts are shortened by overhang residues respectively, so that reasonably short termini can be easily
modeled ab initio if desired.

The io argument is used because the beginning and ending residue numbers for the ‘structure’ entries in
the alignment are renumbered automatically by reading the appropriate atom files.

The number of residues (not alignment positions) removed from the start and end of the first sequence in
edit align codes is returned.

Normally, this procedure ignores chain breaks, removing overhangs only from the very start and end of the
entire sequence. However, if by chain is set to True, overhangs for every chain in the edit align codes sequence
are removed. This mode only works for a single edited sequence, and only for a sequence that does not have
structural information. In this case, a list of pairs is returned, one for each chain; each pair contains the
number of residues removed from the start and end of the chain.

6.16. THE ALIGNMENT CLASS: COMPARISON OF SEQUENCES AND STRUCTURES 157

Example: examples/commands/edit alignment.py

Example for: Alignment.edit()

Read an alignment, write it out in the ’PAP’ format, with overhangs cut.

from modeller import *

log.level(1, 1, 1, 1, 0)

env = Environ()

env.io.atom_files_directory = [’.’, ’../atom_files’]

aln = Alignment(env, file=’overhang.ali’, align_codes=’all’,

alignment_format=’PIR’)

Cut overhangs in the 1is4 sequence that are longer than 3 residues

relative to the longest remaining entry in the alignment:

aln.edit(edit_align_codes=’1is4’, base_align_codes=’rest’,

min_base_entries=1, overhang=3)

aln.write(file=’overhang-1.pir’, alignment_format=’PIR’)

aln.write(file=’overhang-1.pap’, alignment_format=’PAP’)

6.16.16 Alignment.describe() — describe proteins

describe(io=None)

This command outputs basic data about the proteins in the current alignment (e.g.as read in by
Alignment.append()). This command is useful for preparation before comparative modeling because
it summarizes disulfides, cis-prolines, charges, chain breaks, etc. Results which depend only on the amino
acid sequences are still written out even if some atom files do not exist.

Example: examples/commands/describe.py

Example for: Alignment.describe()

Describe the sequences and structures in the alignment.

from modeller import *

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

aln = Alignment(env, file=’toxin.ali’, align_codes=(’2ctx’, ’2abx’))

aln.describe()

6.16.17 Alignment.id table() — calculate percentage sequence identities

id table(matrix file)

This command calculates percentage residue identities for all pairs of sequences in the current alignment.
The percentage residue identity is defined as the number of identical residues divided by the length of the
shorter sequence.

https://salilab.org/modeller/examples/commands/edit_alignment.py
https://salilab.org/modeller/examples/commands/describe.py

158 CHAPTER 6. MODELLER COMMAND REFERENCE

In addition to the output in the log file, this routine creates file matrix file, or writes to an already
open file handle (see modfile.File()), with pairwise sequence distances that can be used directly as
the input to the tree making programs of the Phylip package, such as Kitsch [Felsenstein, 1985], and
also for the Environ.dendrogram() and Environ.principal components() commands. A more gen-
eral version of this command, which allows a user specified measure for residue–residue differences is
Alignment.compare sequences().

Example: examples/commands/id table.py

Example for: Alignment.id_table(), Alignment.compare_sequences(),

misc.principal_components(), misc.dendrogram()

Pairwise sequence identity between sequences in the alignment.

from modeller import *

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

Read all entries in this alignment:

aln = Alignment(env, file=’toxin.ali’)

Access pairwise properties:

s1 = aln[0]

s2 = aln[1]

print("%s and %s have %d equivalences, and are %.2f%% identical" % \

(s1, s2, s1.get_num_equiv(s2), s1.get_sequence_identity(s2)))

Calculate pairwise sequence identities:

aln.id_table(matrix_file=’toxin_id.mat’)

Calculate pairwise sequence similarities:

mdl = Model(env, file=’2ctx’, model_segment=(’1:A’, ’71:A’))

aln.compare_sequences(mdl, rr_file=’$(LIB)/as1.sim.mat’, max_gaps_match=1,

matrix_file=’toxin.mat’, variability_file=’toxin.var’)

mdl.write(file=’2ctx.var’)

Do principal components clustering using sequence similarities:

env.principal_components(matrix_file=’toxin.mat’, file=’toxin.princ’)

Dendrogram in the log file:

env.dendrogram(matrix_file=’toxin.mat’, cluster_cut=-1.0)

6.16.18 Alignment.compare sequences() — compare sequences in alignment

compare sequences(mdl, matrix file, variability file, max gaps match, rr file=’$LIB/as1.sim.mat’)

The pairwise similarity of sequences in the current alignment is evaluated using a user specified residue–
residue scores file.

The residue–residue scores, including gap–residue, and gap–gap scores, are read from file rr file. The sequence
pair score is equal to the average pairwise residue–residue score for all alignment positions that have at most
max gaps match gaps (1 by default). If the gap–residue and gap–gap scores are not defined in matrix file,
they are set to the worst and best residue–residue score, respectively. If matrix file is a similarity matrix, it
is converted into a distance matrix (x′ = −x+ xmax).

https://salilab.org/modeller/examples/commands/id_table.py

6.16. THE ALIGNMENT CLASS: COMPARISON OF SEQUENCES AND STRUCTURES 159

The comparison matrix is written in the Phylip format to file matrix file.

The family variability as a function of alignment position is calculated as the Rms deviation of all residue
– residue scores at a given position, but only for those pairs of residues that have at most max gaps match

gaps (0, 1, or 2). The variability is written to file variability file, as is the number of pairwise comparisons
contributing to each positional variability. The variability, scaled by 0.1, is also written into the Biso field of
the model mdl, which must correspond to the first sequence in the alignment.

Example: See Alignment.id table() command.

6.16.19 Alignment.align() — align two (blocks of) sequences

align(off diagonal=100, local alignment=False, matrix offset=0.0, gap penalties 1d=(-900.0,

-50.0), n subopt=0, subopt offset=0.0, weigh sequences=False, smooth prof weight=10,

align what=’BLOCK’, weights type=’SIMILAR’, input weights file=None, output weights file=None,

rr file=’$(LIB)/as1.sim.mat’, overhang=0, align block=0, break break bonus=10000.0)

IMPORTANT NOTE: This command is obsolete, and is no longer maintained. It is strongly recom-
mended that you use Alignment.salign() instead.

This command aligns two blocks of sequences.

The two blocks of sequences to be aligned are sequences 1 to align block and align block+1 to the last
sequence. The sequences within the two blocks should already be aligned; their alignment does not change.

The command can do either the global (similar to [Needleman & Wunsch, 1970]; local alignment = False)
or local dynamic programming alignment (similar to [Smith & Waterman, 1981]; local alignment = True).

For the global alignment, set overhang length overhang to more than 0 so that the corresponding number of
residues at either of the four termini won’t be penalized by any gap penalties (this makes it a pseudo local
alignment).

To speed up the calculation, set off diagonal to a number smaller than the shortest sequence length. The
alignments matching residues i and j with |i − j| > off diagonal are not considered at all in the search for
the best alignment.

The gap initiation and extension penalties are specified by gap penalties 1d. The default values of -900 -50
for the ’as1.sim.mat’ similarity matrix were found to be optimal for pairwise alignments of sequences that
share from 30% to 45% sequence identity (RS and AŠ, in preparation).

The residue type – residue type scores are read from file rr file. The routine automatically determines whether
it has to maximize similarity or minimize distance.

matrix offset applies to local alignment only and influences its length. matrix offset should be somewhere
between the lowest and highest residue–residue scores. A smaller value of this parameter will make the local
alignments shorter when distance is minimized, and longer when similarity is maximized. This works as
follows: The recursively constructed dynamic programming comparison matrix is reset to 0 at position i, j
when the current alignment score becomes larger (distance) or smaller (similarity) than matrix offset. Note
that this is equivalent to the usual shifting of the residue–residue scoring matrix in the sense that there
are two combinations of gap penalties 1d and matrix offset values that will give exactly the same alignments
irrespective of whether the matrix is actually offset (with 0 used to restart local alignments in dynamic
programming) or the matrix is not offset but matrix offset is used as the cutoff for restarting local alignments
in dynamic programming. For the same reason, the matrix offset does not have any effect on the global
alignments if the gap extension penalty is also shifted for half of the matrix offset.

The position–position score is an average residue–residue score for all possible pairwise comparisons between
the two blocks (n × m comparisons are done, where n and m are the number of sequences in the two
blocks, respectively). The first exception to this is when align what is set to ’ALIGNMENT’, in which case the
two alignments defined by align block are aligned; i.e., the score is obtained by comparing only equivalent
positions between the two alignment blocks (only n comparisons are done, where n is the number of sequences
in each of the two blocks). This option is useful in combination with Alignment.compare with() and

160 CHAPTER 6. MODELLER COMMAND REFERENCE

Alignment.write() for evaluation of various alignment parameters and methods. The second exception is
when align what is set to ’LAST’, in which case only the last sequences in the two blocks are used to get
the scores. In ’BLOCK’, ’ALIGNMENT’, and ’LAST’ comparisons, penalty for a comparison of a gap with a
residue during the calculation of the scoring matrix is obtained from the score file (gap–gap match should
have a score of 0.0).

Only the 20 standard residue types, plus Asx (changes to Asn) and Glx (changes to Gln) are recognized.
Every other unrecognized residue, except for a gap and a chain break, changes to Gly for comparison purposes.

When aligning two sequences containing multiple chains (i.e., with align what set to ’BLOCK’ and align block

set to 1), this command will attempt to ensure that the chain breaks are aligned with each other (so that
residues from one chain will not align with residues from another). This is done by adding a bonus score
to positions in the dynamic programming matrix that correspond to aligning two chain breaks. This score
can be adjusted by setting the break break bonus parameter, or the behavior can be disabled by setting it to
zero. For other kinds of alignments, chain breaks are ignored.

Example: examples/commands/align.py

Example for: Alignment.align()

This will read two sequences, align them, and write the alignment

to a file:

from modeller import *

log.verbose()

env = Environ()

aln = Alignment(env)

aln.append(file=’toxin.ali’, align_codes=(’1fas’, ’2ctx’))

The as1.sim.mat similarity matrix is used by default:

aln.align(gap_penalties_1d=(-600, -400))

aln.write(file=’toxin-seq.ali’)

6.16.20 Alignment.align2d() — align sequences with structures

align2d(overhang=0, align block=0, rr file=’$(LIB)/as1.sim.mat’, align what=’BLOCK’,

off diagonal=100, max gap length=999999, local alignment=False, matrix offset=0.0,

gap penalties 1d=(-100.0, 0.0), gap penalties 2d=(3.5, 3.5, 3.5, 0.2, 4.0, 6.5, 2.0, 0.0,

0.0), surftyp=1, fit=True, fix offsets=(0.0, -1.0, -2.0, -3.0, -4.0), input weights file=None,

output weights file=None, n subopt=0, subopt offset=0.0, input profile file=None,

output profile file=None, weigh sequences=False, smooth prof weight=10, weights type=’SIMILAR’,

break break bonus=10000.0, io=None)

IMPORTANT NOTE: This command is obsolete, and is no longer maintained. It is strongly recom-
mended that you use Alignment.salign() instead.

This command aligns a block of sequences (second block) with a block of structures (first block). It is the
same as the Alignment.align() command except that a variable gap opening penalty is used. This gap
penalty depends on the 3D structure of all sequences in block 1. The variable gap penalty can favor gaps in
exposed regions, avoid gaps within secondary structure elements, favor gaps in curved parts of the mainchain,
and minimize the distance between the two Cα positions spanning a gap. The Alignment.align2d()
command is preferred for aligning a sequence with structure(s) in comparative modeling because it tends to
place gaps in a better structural context. See Section A.1.2 for the dynamic programming algorithm that
implements the variable gap penalty. gap penalties 2d specifies parameters ωH , ωS , ωB , ωC , ωD, do, γ, t and

https://salilab.org/modeller/examples/commands/align.py

6.16. THE ALIGNMENT CLASS: COMPARISON OF SEQUENCES AND STRUCTURES 161

ωSC. (Section A.1.2). The default gap penalties gap penalties 1d and gap penalties 2d as well as the rr file

substitution matrix were found to be optimal in pairwise alignments of structures and sequences sharing
from 30% to 45% sequence identity [Madhusudhan et al., 2006].

The linear gap penalty function for inserting a gap in block 1 of structures is: g = f1(H,S,B,C, SC)u+ lv
where u and v are the usual gap opening and extension penalties, l is gap length, and f1 is a function
that is at least 1, but can be larger to make gap opening more difficult in the following circumstances:
between two consecutive (i.e., i, i+ 1) helical positions, two consecutive β-strand positions, two consecutive
buried positions, or two consecutive positions where the mainchain is locally straight. This function is
f1 = 1 + [ωHHiHi+1 + ωSSiSi+1 + ωBBiBi+1 + ωCCiCi+1 + ωSCSCiSCi+1], Hi is the fraction of helical
residues at position i in block 1, Si is the fraction of β-strand residues at position i in block 1, Bi is the
average relative sidechain buriedness of residues at position i in block 1, Ci is the average straightness of
residues at position i in block 1, and SCi is the structural conservedness at position i in block 1. See
Section 6.6.32 for the definition of these features. The original straightness is modified here by assigning
maximal straightness of 1 to all residues in a helix or a β-strand. The structural conservedness of the
residues in block 1 are imported from an external source input profile file. The structural conservedness at a
particular position gives the likelihood of the occurrence of a gap when structurally similar regions from all
known protein structures are aligned structurally.

The linear gap penalty function for opening a gap in block 2 of sequences is:
g = f2(H,S,B,C,D, SC)u + lv where f2 is a function that is at least 1, but can be larger to make
the gap opening in block 2 more difficult in the following circumstances: when the first gap position is
aligned with a helical residue, a β-strand residue, a buried residue, extended mainchain, or when the
whole gap in block 2 is spanned by two residues in block 1 that are far apart in space. This function is
f2 = 1 + [ωHHi + ωSSi + ωBBi + ωCCi + ωD

√
d− do + ωSCSCi]. d is the distance between the two Cα

atoms spanning the gap, averaged over all structures in block 1 and do is the distance that is small enough
to correspond to no increase in the opening gap penalty (e.g., 8.6Å).

To find the best alignment, this method backtracks through the dynamic programming matrix, effectively
adding gaps up to max gap length. Thus, for optimum performance you may want to reduce this parameter
from its default value.

Other parameters are described in Alignment.align().

When fit is False, no alignment is done and the routine returns only the average structural information,
which can be written out by the Alignment.write() command.

Example: examples/commands/align2d.py

Demonstrating ALIGN2D, aligning with variable gap penalty

from modeller import *

log.verbose()

env = Environ()

env.libs.topology.read(’$(LIB)/top_heav.lib’)

env.io.atom_files_directory = [’../atom_files’]

Read aligned structure(s):

aln = Alignment(env)

aln.append(file=’toxin.ali’, align_codes=’2ctx’)

aln_block = len(aln)

Read aligned sequence(s):

aln.append(file=’toxin.ali’, align_codes=’2nbt’)

Structure sensitive variable gap penalty sequence-sequence alignment:

aln.align2d(overhang=0, gap_penalties_1d=(-100, 0),

gap_penalties_2d=(3.5, 3.5, 3.5, 0.2, 4.0, 6.5, 2.0, 0., 0.),

align_block=aln_block)

https://salilab.org/modeller/examples/commands/align2d.py

162 CHAPTER 6. MODELLER COMMAND REFERENCE

aln.write(file=’align2d.ali’, alignment_format=’PIR’)

aln.write(file=’align2d.pap’, alignment_format=’PAP’,

alignment_features=’INDICES HELIX BETA STRAIGHTNESS ’ + \

’ACCESSIBILITY CONSERVATION’)

aln.check()

Color the first template structure according to gaps in alignment:

aln = Alignment(env)

aln.append(file=’align2d.ali’, align_codes=(’2ctx’, ’2nbt’),

alignment_format=’PIR’, remove_gaps=True)

mdl = Model(env)

mdl.read(file=aln[’2ctx’].atom_file,

model_segment=aln[’2ctx’].range)

mdl.color(aln=aln)

mdl.write(file=’2ctx.aln.pdb’)

Color the first template structure according to secondary structure:

mdl.write_data(file=’2ctx’, output=’SSM’)

mdl.write(file=’2ctx.ssm.pdb’)

Superpose the target structure onto the first template:

mdl2 = Model(env)

mdl2.read(file=aln[’2nbt’].atom_file,

model_segment=aln[’2nbt’].range)

sel = Selection(mdl).only_atom_types(’CA’)

sel.superpose(mdl2, aln)

mdl2.write(file=’2nbt.fit.pdb’)

6.16.21 Alignment.malign() — align two or more sequences

malign(rr file=’$(LIB)/as1.sim.mat’, off diagonal=100, local alignment=False, matrix offset=0.0,

overhang=0, align block=0, gap penalties 1d=(-900.0, -50.0))

IMPORTANT NOTE: This command is obsolete, and is no longer maintained. It is strongly recom-
mended that you use Alignment.salign() instead.

This command performs a multiple sequence alignment. The sequences to be aligned are the sequences in
the current alignment arrays. The command uses the dynamic programming method for the best sequence
alignment, given the gap initiation and extension penalties specified by gap penalties 1d, and residue type
weights read from file rr file. See command Alignment.align() for more information.

The algorithm for the multiple alignment is as follows. First, sequence 2 is aligned with sequence 1 (i.e.,
block of sequences from 1–align block). Next, sequence 3 is aligned with an average of the aligned sequences
1 and 2; i.e., the weight matrix is an average of the weights 1–3 and 2–3. For this averaging, the gap–residue
and gap–gap weights are obtained from the residue–residue weight matrix file, not from gap penalties. If the
corresponding weights are not in the file, they are set to the worst and best residue–residue score, respectively.

See instructions for Alignment.align() for more details.

Example: examples/commands/malign.py

Example for: Alignment.malign()

This will read all sequences from a file, align them, and write

https://salilab.org/modeller/examples/commands/malign.py

6.16. THE ALIGNMENT CLASS: COMPARISON OF SEQUENCES AND STRUCTURES 163

the alignment to a new file:

from modeller import *

env = Environ()

aln = Alignment(env, file=’toxin.ali’, align_codes=’all’)

aln.malign(gap_penalties_1d=(-600, -400))

aln.write(file=’toxin-seq.pap’, alignment_format=’PAP’)

6.16.22 Alignment.consensus() — consensus sequence alignment

consensus(align block=0, gap penalties 1d=(-900.0, -50.0), weigh sequences=False,

input weights file=None, output weights file=None, weights type=’SIMILAR’,

smooth prof weight=10)

This command is similar toAlignment.align() except that a consensus alignment of two blocks of sequences
is produced. A consensus alignment is obtained from a consensus similarity matrix using the specified gap
penalties and the global dynamic programming method. The consensus similarity matrix is obtained by
aligning the two blocks of sequences many times with different parameters and methods and counting how
many times each pair was aligned. This command is still experimental and no detailed description is given
at this time.

This command also produces the alignment accuracy that can be printed out by the Alignment.write()
command in the ’PAP’ format (0 inaccurate, 9 accurate). If the gap initiation penalty is 0, the gap extension
penalty of say 0.4 means that only those positions will be equivalenced that were aligned in at least 80% of
the individual alignments (i.e., 2 times 0.40).

Example: examples/commands/align consensus.py

Example for: Alignment.consensus()

This will read 2 sequences and prepare a consensus alignment

from many different pairwise alignments.

from modeller import *

env = Environ()

aln = Alignment(env)

aln.append(file=’toxin.ali’, align_codes=(’2ctx’, ’2abx’))

aln.consensus(gap_penalties_1d=(0, 0.4), align_block=1)

aln.write(file=’toxin-seq.pap’, alignment_format=’PAP’)

6.16.23 Alignment.compare structures() — compare 3D structures given alignment

compare structures(compare mode=3, fit=True, fit atoms=’CA’, matrix file=’family.mat’,

output=’LONG’, asgl output=False, refine local=True, rms cutoffs=(3.5, 3.5, 60.0, 60.0, 15.0,

60.0, 60.0, 60.0, 60.0, 60.0, 60.0), varatom=’CA’, edat=None, io=None)

https://salilab.org/modeller/examples/commands/align_consensus.py

164 CHAPTER 6. MODELLER COMMAND REFERENCE

This command compares the structures in the given alignment. It does not make an alignment, but it
calculates the Rms and Drms deviations between atomic positions and distances, and class differences
between the mainchain and sidechain dihedral angles. In contrast to the Selection.superpose() command,
Alignment.compare structures() works with a multiple alignment and it writes more information about
the pairwise comparisons.

output selects short (’SHORT’) or long (’LONG’) form of output to the log file. If it contains word ’RMS’ or
’DRMS’ it also outputs the Rms or Drms deviation matrix to file matrix file. This file can be used with the
Phylip program or with the Environ.dendrogram() or Environ.principal components() commands
of Modeller to calculate a clustering of the structures.

compare mode selects the form of the positional variability calculated for each position along the sequence:

1, for true Rms deviation over all proteins that have a residue at the current position. This does not make
any sense for periodic quantities like dihedral angles.

2, for the average absolute distance over all pairs of residues that have a residue at the current position.

3, the same as 2 except that average distance, not its absolute value is used (convenient for comparison
of 2 structures to get the ± sign of the changes for dihedral angles and distances).

rms cutoffs specifies cutoff values for calculation of the position, distance, and dihedral angle Rms deviations
for pairwise overall comparisons. If difference between two equivalent points is larger than cutoff it is not
included in the Rms sum. The order of cutoffs in this vector is: atomic position, intra-molecular distance, α,
Φ, Ψ, ω, χ1, χ2, χ3, χ4, and χ5 (there are 5 dihedrals in a disulfide bridge), where α is the virtual Cα dihedral
angle between four consecutive Cα atoms. These cutoffs do not affect positional variability calculations.

fit atoms string specifies all the atom types (including possibly a generic ’ALL’) to be fitted in the least-
squares superposition. These atom types are used in the least-squares superposition, and in calculation of
the position and distance Rms deviations.

varatom specifies the atom type that is used for getting the average structure and Rms deviation at each
alignment position in the Asgl output file ’posdif.asgl’. This Asgl file contains the positional variability
of the selected atom type in the family of compared proteins. The Asgl output files can then be used with
Asgl scripts ’posdif’ and ’dih’ to produce PostScript plots of the corresponding variabilities at each
alignment position. asgl output has to be True to obtain the Asgl output files.

If fit = True, a least-squares superposition is done before the comparisons; otherwise, the orientation of the
molecules in the input atom files is used.

Example: See Alignment.malign3d() command.

6.16.24 Alignment.align3d() — align two structures

align3d(off diagonal=100, overhang=0, local alignment=False, matrix offset=0.0,

gap penalties 3d=(0.0, 1.75), fit=True, fit atoms=’CA’, align3d trf=False, output=’LONG’,

align3d repeat=False, io=None)

IMPORTANT NOTE: This command is obsolete, and is no longer maintained. It is strongly recom-
mended that you use Alignment.salign() instead.

This command uses the current alignment as the starting point for an iterative least-squares superposition
of two 3D structures. This results in a new pairwise structural alignment. A good initial alignment may
be obtained by sequence alignment (Alignment.align()). For superpositions, only one atom per residue is
used, as specified by fit atoms.

The alignment algorithm is as follows. First, structure 2 is least-squares fit on structure 1 using all the
equivalent residue positions in the initial alignment that have the specified atom type. Next, the residue–
residue distance matrix is obtained by calculating Euclidean distances between all pairs of selected atoms
from the two structures. The alignment of the two structures is then obtained by the standard dynamic
programming optimization based on the residue–residue distance matrix.

https://salilab.org/asgl/
https://salilab.org/asgl/
https://salilab.org/asgl/
https://salilab.org/asgl/
https://salilab.org/asgl/

6.16. THE ALIGNMENT CLASS: COMPARISON OF SEQUENCES AND STRUCTURES 165

gap penalties 3d[0] is a gap creation penalty (usually 0), and gap penalties 3d[1] is a gap extension penalty, say
1.75. This procedure identifies pairs of residues as equivalent when they have their selected atoms at most 2
times gap penalties 3d[1] angstroms apart in the current orientation (this is so when the gap initiation penalty
is 0). The reason is that an equivalence costs the distance between the two residues while an alternative, the
gap–residue and residue-gap matches, costs twice the gap extension penalty.

From the dynamic programming run, a new alignment is obtained. Thus, structure 2 can be fitted onto
structure 1 again, using this new alignment, and the whole cycle is repeated until there is no change in the
number of equivalent positions and until the difference in the rotation matrices for the last two superpositions
is very small. At the end, the framework, that is the alignment positions without gaps, is written to the log
file.

If fit is False, no alignment is done.

If output contains ’SHORT’, only the best alignment and its summary are displayed. If output contains ’LONG’,
summaries are displayed for all initial alignments in each framework cycle. If output contains ’VERY LONG’,
all alignments are displayed.

If align3d trf is True, the weights in the weight matrix are modified distances [Subbiah et al., 1993].

If align3d repeat is True, three additional initial alignments are tried and the one resulting in the largest
number of equivalent positions is selected.

Example: examples/commands/align3d.py

Example for: Alignment.align3d(), Selection.superpose()

This will align 3D structures of two proteins:

from modeller import *

log.verbose()

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

First example: read sequences from a sequence file:

aln = Alignment(env)

aln.append(file=’toxin.ali’, align_codes=[’1fas’, ’2ctx’])

aln.align(gap_penalties_1d=[-600, -400])

aln.align3d(gap_penalties_3d=[0, 4.0])

aln.write(file=’toxin-str.ali’)

Second example: read sequences from PDB files to eliminate the

need for the toxin.ali sequence file:

mdl = Model(env)

aln = Alignment(env)

for code in [’1fas’, ’2ctx’]:

mdl.read(file=code)

aln.append_model(mdl, align_codes=code, atom_files=code)

aln.align(gap_penalties_1d=(-600, -400))

aln.align3d(gap_penalties_3d=(0, 2.0))

aln.write(file=’toxin-str.ali’)

And now superpose the two structures using current alignment to get

various RMS’s:

mdl = Model(env, file=’1fas’)

atmsel = Selection(mdl).only_atom_types(’CA’)

mdl2 = Model(env, file=’2ctx’)

atmsel.superpose(mdl2, aln)

https://salilab.org/modeller/examples/commands/align3d.py

166 CHAPTER 6. MODELLER COMMAND REFERENCE

6.16.25 Alignment.malign3d() — align two or more structures

malign3d(off diagonal=100, overhang=0, local alignment=False, matrix offset=0.0,

gap penalties 3d=(0.0, 1.75), fit=True, fit atoms=’CA’, output=’LONG’, write whole pdb=True,

current directory=True, write fit=False, edit file ext=(’.pdb’, ’ fit.pdb’), io=None)

IMPORTANT NOTE: This command is obsolete, and is no longer maintained. It is strongly recom-
mended that you use Alignment.salign() instead.

This command uses the current alignment as the starting point for an iterative least-squares superposition of
two or more 3D structures. This results in a new multiple structural alignment. A good initial alignment may
be obtained by sequence alignment (Alignment.malign()). For superpositions, only one atom per residue is
used, as specified by fit atoms. The resulting alignment can be written to a file with the Alignment.write()
command. The multiply superposed coordinates remain in memory and can be used with such commands as
Model.transfer xyz() if Sequence.atom file is not changed in the meantime. It is best to use the structure
that overlaps most with all the other structures as the first protein in the alignment. This may prevent an
error exit due to too few equivalent positions during framework construction.

The alignment algorithm is as follows. There are several cycles, each of which consists of an update of
a framework and a calculation of a new alignment; the new alignment is based on the superposition of
the structures onto the latest framework. The framework in each cycle is obtained as follows. The initial
framework consists of the atoms in structure 1 that correspond to fit atoms. If there is no specified atom
types in any of the residues at a given position, the coordinates for this framework position are approximated
by the neighboring coordinates. Next, all other structures are fit to this framework. The final framework for
the current cycle is then obtained as an average of all the structures, in their fitted orientations, but only
for residue positions that are common to all of them, given the current alignment. Another result is that
all the structures are now superposed on this framework. Note that the alignment has not been changed
yet. Next, the multiple alignment itself is re-derived in N − 1 dynamic programming runs, where N is
the number of structures. This is done as follows. First, structure 2 is aligned with structure 1, using the
inter-molecular atom–atom distance matrix, for all atoms of the selected type, as the weight matrix for the
dynamic programming run. Next, structure 3 is aligned with an average of structures 1 and 2 using the same
dynamic programming technique. Structure 4 is then aligned with an average of structures 1–3, and so on.
Averages of structures i–j are calculated for all alignment positions where there is at least one residue in
any of the structures i–j (this is different from a framework which requires that residues from all structures
be present). Note that in this step, residues out of the current framework may get aligned and the current
framework residues may get unaligned. Thus, after the series of N − 1 dynamic programming runs, a new
multiple alignment is obtained. This is then used in the next cycle to obtain the next framework and the
next alignment. The cycles are repeated until there is no change in the number of equivalent positions. This
procedure is best viewed as a way to determine the framework regions, not the whole alignment. The results
from this command are expected to be similar to the output of program Mnyfit [Sutcliffe et al., 1987].

gap penalties 3d[0] is a gap creation penalty (usually 0), and gap penalties 3d[1] is a gap extension penalty,
say 1.75. This procedure identifies pairs of positions as equivalent when they have their selected atoms
at most 2 times gap penalties 3d[1] angstroms apart in the current superposition (this is so when the gap
initiation penalty is 0), as described for the Alignment.align3d() command.

Argument output can contain the following values:

• ’SHORT’, only the final framework is written to the log file.

• ’LONG’, the framework after the alignment stage in each cycle is written to the log file.

• ’VERY LONG’, the framework from the framework stage in each cycle is also written to the log.

If write fit is True, the fitted atom files are written out in their final fitted orientations. To construct
the filenames, first the file extension in edit file ext[0] is removed (if present), and then the extension in
edit file ext[1] is added (if not already present). By default this creates files with a fit extension.

If current directory is True, the fitted atom files will go to the current directory. Otherwise, the output will
be in the directory with the original files7.

7This won’t work in combination with write whole pdb = False for structures that were added to the alignment with

6.16. THE ALIGNMENT CLASS: COMPARISON OF SEQUENCES AND STRUCTURES 167

If write whole pdb is True, the whole PDB files are written out8; otherwise only the parts corresponding to
the aligned sequences are output.

If fit is False, the initial alignment is not changed. This is useful when all the structures have to be
superimposed with the initial alignment (fit = False and write fit = True).

Example: examples/commands/malign3d.py

Example for: Alignment.malign3d(), Alignment.compare_structures()

This will read all sequences from a sequence file, multiply align

their 3D structures, and then also compare them using this alignment.

from modeller import *

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

aln = Alignment(env, file=’toxin.ali’, align_codes=’all’)

aln.malign(gap_penalties_1d=(-600, -400))

aln.malign3d(gap_penalties_3d=(0, 2.0), write_fit=True, write_whole_pdb=False)

aln.write(file=’toxin-str.pap’, alignment_format=’PAP’)

Make two comparisons: no cutoffs, and 3.5A/60 degree cutoffs for RMS, DRMS,

and dihedral angle comparisons:

aln.compare_structures(rms_cutoffs=[999]*11)

aln.compare_structures(rms_cutoffs=(3.5, 3.5, 60, 60, 60, 60, 60, 60, 60,

60, 60))

6.16.26 Alignment.salign() — align two or more sequences/structures of proteins

salign(residue type2=’REGULAR’, no ter=False, overhang=0, off diagonal=100, matrix offset=0.0,

gap penalties 1d=(-900.0, -50.0), gap penalties 2d=(3.5, 3.5, 3.5, 0.2, 4.0, 6.5, 2.0,

0.0, 0.0), gap penalties 3d=(0.0, 1.75), feature weights=(1.0, 0.0, 0.0, 0.0, 0.0,

0.0), rms cutoff=3.5, fit=True, surftyp=1, fit on first=False, gap function=False,

align block=0, max gap length=999999, align what=’BLOCK’, input weights file=None,

output weights file=None, weigh sequences=False, smooth prof weight=10, fix offsets=(0.0,

-1.0, -2.0, -3.0, -4.0), substitution=False, comparison type=’MAT’, matrix comparison=’CC’,

alignment type=’PROGRESSIVE’, edit file ext=(’.pdb’, ’ fit.pdb’), weights type=’SIMILAR’,

similarity flag=False, bkgrnd prblty file=’$(LIB)/blosum62 bkgrnd.prob’, ext tree file=None,

dendrogram file=’’, matrix scaling factor=0.0069, auto overhang=False, overhang factor=0.4,

overhang auto limit=60, local alignment=False, improve alignment=True, fit atoms=’CA’,

output=’’, write whole pdb=True, current directory=True, write fit=False, fit pdbnam=True,

rr file=’$(LIB)/as1.sim.mat’, n subopt=0, subopt offset=0.0, align3d trf=False,

normalize pp scores=False, gap gap score=0.0, gap residue score=0.0, nsegm=2,

matrix offset 3d=-0.1, break break bonus=10000.0, io=None)

Output: SalignData object

Alignment.append model(), since such inputs may not have an atom file to extract the directory from. In this case the outputs
will end up in the current directory.

8Any structures that were added with Alignment.append model() will need to have their corresponding atom files available, so
that the originals can be reread at this point.

https://salilab.org/modeller/examples/commands/malign3d.py

168 CHAPTER 6. MODELLER COMMAND REFERENCE

This command is a general dynamic programming based alignment procedure for aligning sequences, struc-
tures or a combination of the two. It is loosely based on the program COMPARER [Šali & Blundell, 1990].
SALIGN can be used to generate multiple protein structures/sequences alignments or to align two blocks of
sequences/structures that are in memory.

See also Section 6.34 for utility scripts to simplify the high-level usage of SALIGN.

Please note that the method is still in development, and has not yet been fully benchmarked. As with any
other alignment method, generated alignments should be assessed for quality.

Broadly classifying, three different types of protein alignment categories are tackled by this command:

1. Multiple structure alignments

2. Aligning a structure block to a sequence block

3. Multiple and pair-wise protein sequence alignment

The command incorporates the functionality of several old Modeller commands (Alignment.align(),
Alignment.align2d(), Alignment.malign(), Alignment.align3d(), and Alignment.malign3d()).
Some of the examples below illustrate the equivalent script files to replace the old alignment commands
with Alignment.salign().

In addition to these, this command has several new alignment features including profile-profile sequence
alignments and a dendrogram based multiple sequence/structure alignment among others.

All pair-wise alignments make use of local or global dynamic programming. A switch from one to another
can be effected by setting local alignment to True or False. The dynamic programming can be carried out
using affine gap penalties (as previously used in Alignment.align(), by setting gap function to False) or an
environment dependent gap penalty function (as used in Alignment.align2d(), by setting gap function to
True). (Please note that the default gap penalties 1d parameters are optimal for the affine gap penalty; see
the align2d examples for reasonable parameters if you wish to use the environment dependent gap penalty.)
All arguments that associated to the Alignment.align() and Alignment.align2d() commands apply.

If at least one of the blocks in a pairwise alignment consists of structures, dynamic programming can be
performed using structure dependent gap penalties.

On successful completion, an SalignData object is returned, from which some of the calculated data can be
queried. For example, if you save this in a variable ’r’, the following data are available:

• r.aln score; the alignment score

• r.qscorepct; the quality score (percentage) if output contains ’QUALITY’

Features of proteins used for alignment

Central to the dynamic programming algorithm is the weight matrix. In SALIGN, this matrix is constructed
by weighting the contribution from six features of protein structure and sequence:

Feature 1 is the residue type. W 1
i,j is obtained from the residue type – residue type dissimilarity matrix,

specified in the file rr file. W 1
i,j dissimilarity score for positions i and j in the two compared sub-

alignments is the average dissimilarity score for a comparison of all residues in one sub-alignment with
all residues in the other sub-alignment (note that gaps are ignored here). Should only feature weight 1
be non-zero, the user has an option of considering residue-residue similarity scores instead of distance
scores by setting similarity flag to True. (The other features are distance features, and so if their weights
are non-zero, similarity flag must be turned off, which is the default.)

Feature 2 is the inter-molecular distance for a pair of residues (unless align3d trf is True: see
Alignment.align3d()). Only one atom per residue is of course selected, as specified by fit atoms

(e.g., Cα, although we should also allow for Cβ in the future, which requires an intervention for Gly).
This ‘position’ feature is complicated because it depends on the relative orientation of the structures
corresponding to the two compared alignments. W 2

i,j is the Euclidean distance between the compared
positions i and j in the two compared sub-alignments that are already optimally aligned and superposed
based on their coordinates alone. This optimal alignment is obtained by an iterative procedure as follows

6.16. THE ALIGNMENT CLASS: COMPARISON OF SEQUENCES AND STRUCTURES 169

(the same as in Alignment.align3d()). The average structures for both sub-alignments are calculated
for all sub-alignment positions with at least one defined selected atom. This calculation is straightfor-
ward because the structures within the two sub-alignments are already superposed with each other (see
below). Then, the distance matrix for dynamic programming with affine gap penalties is calculated as
the matrix of Euclidean distances between the two averages. The dynamic programming results into a
new alignment, dependent also on the gap initiation and extension penalties gap penalties 3d (a reason-
able setting is (0, 3)). gap penalties 3d[0] is a gap creation penalty (usually 0), and gap penalties 3d[1] is
a gap extension penalty, say 3. When the gap initiation penalty is 0, pairs of positions are identified as
equivalent when they have their selected atoms at most 2 times gap penalties 3d[1] angstroms apart in
the current superposition, as described for the Alignment.align3d() command. The new alignment
is then used to generate the new superposition of the two averages, and the iteration of the distance
matrix calculation, alignment and superposition is repeated until there are no changes in the number
of equivalent positions and in the rotation matrix relating the two averages.

The values of both improve alignment and fit are used in the calculation of the position feature. That is,
the initial alignment and the orientation of the coordinates can be selected not to change at all during
the calculation of the inter-molecular distance matrix.

When the calculation of the inter-molecular distance matrix is finished, all the structures in the second
sub-alignment are rotated and translated following the optimal rotation and translation of the second
average on the first average. These superpositions prepare the individual structures for the next of
the n − 1 stages of the progressive multiple alignment, and also orient all the structures for writing
out to atom files with a ’ fit.pdb’ extension if write fit = True. If fit pdbnam = False, the PDB
filenames in the output alignment file will not have the ’ fit.pdb’ extensions. Thus, feature 2 needs
to be selected by feature weight[2] > 0 if you wish to write out the structures superposed according to
the tree-following procedure; also, fit on first must be False, otherwise the structures are written out
superposed on the first structure according to the final alignment (see also below).

The alignment produced within the routine that calculates W 2 does not generally correspond to the
alignment calculated based on W . Therefore, the multiply superposed structures are not necessarily
superposed based on the final multiple alignment produced by Alignment.salign(). If you wish such a
superposition, you can use Alignment.malign3d() with fit = False and write fit = True (the meaning
of fit is different between Alignment.salign() and Alignment.malign3d()).

Unless the position feature is selected, the initial alignment does not matter. If the position fea-
ture is selected, a good starting alignment is a multiple sequence alignment, obtained either by
Alignment.malign() or by Alignment.salign() used without the position feature (the initial align-
ment can also be prepared using the position feature). If the position feature is used, each pair of
structures needs to have at least 3 aligned residues at all points during the alignment.

There are several possibilities as to the final orientation of the input coordinates. If fit on first is True,
all the coordinate sets are superposed on the first structure, using the final multi-feature multiple
alignment. If fit on first is False, and position feature was used, and fit was True, the coordinates will
be superposed in the progressive manner guided by the tree, by the routine that calculates the inter-
molecular distance matrices; this superposition is based only on the positions of the selected atoms
(feature 2), not on other features such as residue type, secondary, structure, etc. If improve alignment

is False, it does not make much sense to have fit = True (use fit on first = True).

For local alignments, the matrix offset variable is matrix offset 3d.

Feature 3 is the fractional sidechain accessibility. The pair-wise residue–residue dissimilarity is calculated
by classifying residues into the buried (< 15%), semi-exposed, and exposed classes (> 30%). The
dissimilarity is 0 for equal classes or if the absolute difference in the accessibility is less than 5%, 1
for neighboring classes and 2 for the buried–exposed match. The position–position dissimilarity is the
average residue–residue dissimilarity for comparing all residues from one group to all residues in the
other group (gaps are ignored).

Feature 4 is the secondary structure type, distinguishing between helix, strand, and other. The pair-wise
residue–residue dissimilarity is 0 for equal classes, 1 for ‘helix’ or ‘strand’ matched to ‘other’, and 2 for
‘helix’ matched to ’strand’. Position–position dissimilarity is calculated in the same way as for feature
3.

Feature 5 is the local conformation. A pair-wise residue–residue score is DRMSD between the selected

170 CHAPTER 6. MODELLER COMMAND REFERENCE

atoms (fit atoms) from the segments of (2*nsegm + 1) residues centered on the two matched residues.
Position–position dissimilarity is calculated in the same way as for feature 3.

Feature 6 is a user specified feature for which a external matrix (in Modeller matrix format; see the
substitution matrices in the modlib directory for examples) has to be specified using input weights file.
The user can input either a similarity matrix (weights type= SIMILAR) or a distance matrix (weights type
= DISTANCE).

Alignment of protein sequences

• Multiple protein sequence alignment
Aligning multiple sequences is similar to aligning multiple structures, the difference being that for se-
quence alignments only the first feature weight can be non-zero (the other features require coordinates).
This is the default for feature weights.

Example: examples/salign/salign multiple seq.py
Illustrates the SALIGN multiple sequence alignment

from modeller import *

log.verbose()

env = Environ()

env.io.atom_files_directory = [’.’, ’../atom_files’]

aln = Alignment(env, file=’malign_in.ali’)

aln.salign(overhang=30, gap_penalties_1d=(-450, -50),

alignment_type=’tree’, output=’ALIGNMENT’)

aln.write(file=’malign.ali’, alignment_format=’PIR’)

• Alignment of two sequence blocks
Two blocks of sequences can be aligned using the information contained within each of the multiple
sequence blocks [Mart́ı-Renom et al., 2004]. Pairs of sequence blocks are aligned using SALIGN the
same way in which Alignment.align() aligned sequence blocks; to align two blocks, simply proceed
as normal, but set align block to the number of sequences in the first block (the rest of the sequences
are placed in the second block) and set alignment what to BLOCK. Also, since this kind of alignment is
effected only between two blocks, alignment type is set to PAIRWISE.

• Alignment of protein sequences by their profiles
As for pairwise alignment of sequence blocks, above, two blocks can be aligned by their profiles.
align block demarcates the end of the first block and align what is set to PROFILE indicating that the
blocks will be aligned using their profiles, and alignment type is set to PAIRWISE. The weight matrix for
dynamic programming is created by comparing the sequence information in the two blocks. Two kinds
of comparisons can be performed:

1. A correlation coefficient of the variation of the 20 amino acids at each position (comparison type is
set to PSSM).

2. Comparing the residue substitution matrices implied at each position of the two blocks (compari-

son type is set to MAT).

Matrix comparisons are of three types: taking the maximum, average or correlation coefficient of
residue-residue substitution at the aligned positions (matrix comparison set to MAX, AVE or CC).

Profile comparisons are done in similarity space rather than distance space, so similarity flag should be
set to True. They will also currently only work with feature 1 (since feature 1 is the only feature which
works both in similarity and in distance space) - the weights for all other features must be set to zero.

Example: examples/salign/salign profile profile.py
profile-profile alignment using salign

from modeller import *

https://salilab.org/modeller/examples/salign/salign_multiple_seq.py
https://salilab.org/modeller/examples/salign/salign_profile_profile.py

6.16. THE ALIGNMENT CLASS: COMPARISON OF SEQUENCES AND STRUCTURES 171

log.level(1, 0, 1, 1, 1)

env = Environ()

aln = Alignment(env, file=’mega_prune.faa’, alignment_format=’FASTA’)

aln.salign(rr_file=’${LIB}/blosum62.sim.mat’,

gap_penalties_1d=(-500, 0), output=’’,

align_block=15, # no. of seqs. in first MSA

align_what=’PROFILE’,

alignment_type=’PAIRWISE’,

comparison_type=’PSSM’, # or ’MAT’ (Caution: Method NOT benchmarked

for ’MAT’)

similarity_flag=True, # The score matrix is not rescaled

substitution=True, # The BLOSUM62 substitution values are

multiplied to the corr. coef.

#output_weights_file=’test.mtx’, # optional, to write weight matrix

smooth_prof_weight=10.0) # For mixing data with priors

#write out aligned profiles (MSA)

aln.write(file=’salign.ali’, alignment_format=’PIR’)

Make a pairwise alignment of two sequences

aln = Alignment(env, file=’salign.ali’, alignment_format=’PIR’,

align_codes=(’12asA’, ’1b8aA’))

aln.write(file=’salign_pair.ali’, alignment_format=’PIR’)

aln.write(file=’salign_pair.pap’, alignment_format=’PAP’)

Alignment of protein structures with sequences

As stated earlier, all Alignment.align() and Alignment.align2d() related commands ap-
ply to Alignment.salign() too. The example below is a Alignment.salign() equivalent of
Alignment.align2d() (and Alignment.align()). For a description of the gap penalties 2d see the sec-
tion on Alignment.align2d().

Example: examples/salign/salign align2d.py
align2d/align using salign

parameters to be input by the user

1. gap_penalties_1d

2. gap_penalties_2d

3. input alignment file

from modeller import *

log.verbose()

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

aln = Alignment(env, file=’align2d_in.ali’, align_codes=’all’)

aln.salign(rr_file=’$(LIB)/as1.sim.mat’, # Substitution matrix used

output=’’,

max_gap_length=20,

gap_function=True, # If False then align2d not done

feature_weights=(1., 0., 0., 0., 0., 0.),

https://salilab.org/modeller/examples/salign/salign_align2d.py

172 CHAPTER 6. MODELLER COMMAND REFERENCE

gap_penalties_1d=(-100, 0),

gap_penalties_2d=(3.5, 3.5, 3.5, 0.2, 4.0, 6.5, 2.0, 0.0, 0.0),

d.p. score matrix

#output_weights_file=’salign.mtx’

similarity_flag=True) # Ensuring that the dynamic programming

matrix is not scaled to a difference matrix

aln.write(file=’align2d.ali’, alignment_format=’PIR’)

aln.write(file=’align2d.pap’, alignment_format=’PAP’)

Caution: The values of gap penalties 2d have been optimized for similarity matrices. If using a distance
matrix, you will need to derive new optimized values.

Alignment of protein structures

Structure alignments can make use of all the 5 structure/sequence features as well as the 6th user provided
feature matrix. Pairwise alignments of structures can make use of the constant gap penalties or the envi-
ronment dependent gap penalties. Multiple structure alignments are constructed from pairwise structure
alignments.

This section describes the use of SALIGN to produce a single alignment of multiple structures. If the best
output alignment is desired, it is recommended to run SALIGN in an iterative fashion, to determine the best
parameter values. A utility script is provided for this purpose - see iterative structural align().

• Pairwise protein structure alignment
For optimal pairwise alignments it is suggested to call SALIGN multiple times, typically 2-3 times. The
first SALIGN call will give an initial alignment which is refined in the subsequent calls. Usually, feature
2 is made non-zero only during the ’refinement’ stage as rigid body refinement is done at the position
implied by the alignment in memory.

• Tree Multiple Structure Alignments
When alignment type is set to tree, a dendrogram of the n proteins in memory is calculated using the
selected features. The multiple alignment is then a progression of n−1 pairwise alignments of the growing
sub-alignments. A sub-alignment is an alignment of < n proteins. The pairwise alignment of two sub-
alignments is achieved using affine or environment dependent gap penalties, depending on whether
gap function is set to False or True (arguments to the Alignment.align() and Alignment.align2d()
commands apply).

• Progressive Multiple Structure Alignments
If alignment type is set to progressive, the multiple alignment follows only the last part of the ‘tree’
alignment where, in n− 1 alignments, all the structures/sequences are successively aligned to the first
one on the list.

The alignment of proteins within a sub-alignment does not change when the sub-alignment is aligned with
another protein or sub-alignment. The pairwise alignment of sub-alignments is guided by the dendrogram.
First, the most similar pair of proteins are aligned. Second, the next most similar pair of proteins are aligned,
or the third protein is aligned with the sub-alignment of the first two, as indicated by the dendrogram. This
greedy, progressive procedure requires n − 1 steps to align all n proteins, and each step requires a pairwise
alignment of two sub-alignments.

If in a multiple alignment, overhangs are to be penalized differently for the pairs of alignments that create
the multiple, auto overhang can be set to True. This will ensure that the value of overhang changes as
overhang factor times the numerical difference in the residues of the pair. Further, this is only effected if the
difference is greater than overhang auto limit.

The dendrogram can be written out in a separate file by specifying the file name to dendrogram file.

Example: examples/salign/salign multiple struc.py

https://salilab.org/modeller/examples/salign/salign_multiple_struc.py

6.16. THE ALIGNMENT CLASS: COMPARISON OF SEQUENCES AND STRUCTURES 173

Illustrates the SALIGN multiple structure/sequence alignment

from modeller import *

log.verbose()

env = Environ()

env.io.atom_files_directory = [’.’, ’../atom_files’]

aln = Alignment(env)

for (code, chain) in ((’1is4’, ’A’), (’1uld’, ’D’), (’1ulf’, ’B’),

(’1ulg’, ’B’), (’1is5’, ’A’)):

mdl = Model(env, file=code, model_segment=(’FIRST:’+chain, ’LAST:’+chain))

aln.append_model(mdl, atom_files=code, align_codes=code+chain)

for (weights, write_fit, whole) in (((1., 0., 0., 0., 1., 0.), False, True),

((1., 0.5, 1., 1., 1., 0.), False, True),

((1., 1., 1., 1., 1., 0.), True, False)):

aln.salign(rms_cutoff=3.5, normalize_pp_scores=False,

rr_file=’$(LIB)/as1.sim.mat’, overhang=30,

gap_penalties_1d=(-450, -50),

gap_penalties_3d=(0, 3), gap_gap_score=0, gap_residue_score=0,

dendrogram_file=’1is3A.tree’,

alignment_type=’tree’, # If ’progresive’, the tree is not

computed and all structures will be

aligned sequentially to the first

#ext_tree_file=’1is3A_exmat.mtx’, # Tree building can be avoided

if the tree is input

feature_weights=weights, # For a multiple sequence alignment only

the first feature needs to be non-zero

improve_alignment=True, fit=True, write_fit=write_fit,

write_whole_pdb=whole, output=’ALIGNMENT QUALITY’)

aln.write(file=’1is3A.pap’, alignment_format=’PAP’)

aln.write(file=’1is3A.ali’, alignment_format=’PIR’)

The number of equivalent positions at different RMS_CUTOFF values can be

computed by changing the RMS value and keeping all feature weights = 0

aln.salign(rms_cutoff=1.0,

normalize_pp_scores=False, rr_file=’$(LIB)/as1.sim.mat’, overhang=30,

gap_penalties_1d=(-450, -50), gap_penalties_3d=(0, 3),

gap_gap_score=0, gap_residue_score=0, dendrogram_file=’1is3A.tree’,

alignment_type=’progressive’, feature_weights=[0]*6,

improve_alignment=False, fit=False, write_fit=True,

write_whole_pdb=False, output=’QUALITY’)

Sub-optimal alignments

The weight matrix can be offset at random, many times over, to generate several ‘sub-optimal’ alignments.
The number of sub-optimal alignments to be output can be specified with n subopt. Though the matrix
positions at which these offsets are applied cannot be controlled, the user can choose by how much the
matrix will be offset (subopt offset). The alignments are written into the file ’suboptimal alignments.out’
(or ’suboptimal alignments2d.out’ if gap function is True) in a simple format. For each such alignment, an
’ALIGNMENT:’ line is written, containing in order

174 CHAPTER 6. MODELLER COMMAND REFERENCE

• the number of the alignment (the first alignment is numbered 0, and is the true or ’optimal’ alignment,
for reference)

• the start, end and length of the alignment

• the number of aligned positions

• the score of the alignment

• three final fields for internal use

After this the two sequences are written as ’SEQ1’ and ’SEQ2’, as a simple mapping from alignment positions
to sequences.

Note that subopt offset should be positive for alignments using distance matrices (similarity flag = False)
and negative when using similarity matrices (similarity flag = True).

Note that because the suboptimal alignments are generated sequentially, the alignment in memory at the
end of the command will be the last (or worst) suboptimal alignment, not the optimal alignment.

The suboptimal alignment file can be converted into a set of real alignments using the
Alignment.get suboptimals() method.

Example: examples/salign/salign subopt.py
from modeller import *

log.verbose()

env = Environ()

aln = Alignment(env, file=’fm07254_test.ali’, alignment_format=’PIR’)

aln.salign(feature_weights=(1., 0, 0, 0, 0, 0), gap_penalties_1d=(-450, -50),

n_subopt = 5, subopt_offset = 15)

Convert suboptimal alignment output file into actual alignments

f = open(’suboptimal_alignments.out’)

for (n, aln) in enumerate(aln.get_suboptimals(f)):

aln.write(file=’fm07254_out%d.ali’ % n)

Alignments using external restraints

Fix positions: The user can choose to have certain alignment positions ”fixed” by offsetting the appropriate
matrix entries. This is done by adding a new pseudo sequence to the alignment with the align code . fix pos.
The residues of this pseudo sequence are integer values from 0 through 4 (alternatively, a blank is equivalent
to 0). Any alignment position at which this pseudo sequence contains a ’0’ is treated normally; if, however,
a non-zero integer is used, the alignment matrix is offset, generally making the alignment in that position
more favorable (and more so for higher integers). The actual offset values themselves can be specified by the
user by setting the fix offsets variable. Note that since SALIGN converts all DP scoring matrices to distance
matrices (unless otherwise specified using similarity flag), the values of fix offsets used in anchoring alignment
positions should be numerically smaller or negative in comparison to the values in the DP matrix.

Example: examples/salign/salign fix positions.py
Demonstrating the use of alignment restraints, only available in

align2d and salign:

from modeller import *

log.verbose()

env = Environ()

The special alignment entry ’_fix_pos’ has to be the last entry in the

alignment array. Its sequence contains characters blank (or 0), 1, 2, 3,

https://salilab.org/modeller/examples/salign/salign_subopt.py
https://salilab.org/modeller/examples/salign/salign_fix_positions.py

6.16. THE ALIGNMENT CLASS: COMPARISON OF SEQUENCES AND STRUCTURES 175

and 4 at the restrained alignment positions. The residue-residue score from

the substitution matrix for these positions will be offset by the scalar

value FIX_OFFSETS[0..4].

aln = Alignment(env, file=’fix_positions.ali’, align_codes=(’1leh’, ’3btoA’,

’_fix_pos’))

fix_offsets specifies the offset corresponding to character ’ 1234’ in the

_fix_pos entry in the alignment

(this offsets unlabeled positions for 0, the ones indicated by 1 by

1000, those indicated by 2 by 2000, etc.)

aln.salign(fix_offsets=(0, -10, -20, -30, -40),

gap_penalties_2d=(0, 0, 0, 0, 0, 0, 0, 0, 0), # Any values are

possible here

local_alignment=False, # Local alignment works, too

gap_penalties_1d=(-600, -400)) # This is best with the default value

of gap_penalties_2d

Write it out, the _fix_pos is erased automatically in salign:

aln.write(file=’fix_positions_salign.pap’, alignment_format=’PAP’)

External weight matrix: An example of using feature 6.

Example: examples/salign/salign external matrix.py
Reads an external matrix

from modeller import *

log.verbose()

env = Environ()

aln = Alignment(env, file=’1dubA-1nzyA.ali’, align_codes=’all’)

aln.salign(alignment_type=’pairwise’, output=’’,

rr_file=’$(LIB)/blosum62.sim.mat’,

#rr_file=’$(LIB)/as1.sim.mat’,

#max_gap_length=20,

gap_function=False,

input_weights_file=’external.mtx’, # External weight matrix

#weights_type=’DISTANCE’, # type of ext. wgt. mtx

ensure appropriate gap penalites for the ext. matrix

#feature_weights=(1., 0., 0., 0., 0., 0.), gap_penalties_1d=(30, 26),

#output_weights_file=’score.mtx’,

feature_weights=(1., 0., 0., 0., 0., 1.),

gap_penalties_1d=(-500, -300))

aln.write(file=’output.ali’, alignment_format=’PIR’)

aln.write(file=’output.pap’, alignment_format=’PAP’)

Multiple structure alignment according to a user specified dendrogram The user has the option
of inputting an n X n matrix from which a dendrogram can be inferred. The multiple tree alignment is then
confined to follow this externally input dendrogram. To effect this, specify the name of the external matrix
file with the ext tree file variable. The format of this file is the same as the external weight matrix, above;
the first line of the file contains the dimensions of the matrix (in this case it should be a square matrix,
with both dimensions equal to the number of sequences in the alignment), and subsequent lines contain
sequence-sequence distances, one row of the matrix per line.

https://salilab.org/modeller/examples/salign/salign_external_matrix.py

176 CHAPTER 6. MODELLER COMMAND REFERENCE

Gap penalties and correcting for gaps

SALIGN makes use of three sets of gap penalties. gap penalties 1d are for dynamic programming mak-
ing use of constant gap penalties. gap penalties 2d are when a variable function for gap penalty is used.
gap penalties 3d is used along with feature 2 only, when structures are aligned by a least squares fit of their
atomic positions. All SALIGN features produce some measure of residue equivalence (similarity or distance
scores). The scales of these scores differ depending on the feature used. For optimal usage, gap penalties 1d

should be set appropriately considering the features used. Note: If feature 1 is non zero and a similarity
substitution matrix is employed, no matter what other features are also used in conjunction, gap penalties 1d

should always take on values appropriate to the substitution matrix used. For example, if feature 1 is non
zero (other features may or may not be non-zero), and the residue substitution matrix used is the BLO-
SUM62 similarity matrix, gap penalties 1d is set to (-450, -50) and when feature 1 is zero gap penalties 1d is
set to values appropriate for a distance matrix, e.g., (2, 3). A word of caution: gap penalties have not yet
been optimized for aligning sequences by their profiles and for structure alignments.

The gap correction function is gi,j =
nrg

(n1n2)
r +

ngg

(n1n2)
g, where n1 and n2 are the number of proteins in the

two sub-alignments, nrg is the number of gap–residue pairs, and ngg is the number of gap–gap pairs when
comparing protein positions from one sub-alignment with protein position from the other sub-alignment, r
is gap residue score and g is gap gap score. The smaller (even negative) is gap gap score, and the larger is
gap residue score, the more will the gaps be aligned with gaps.

Whenever an alignment of two sequences is done and feature 1 is non-zero, SALIGN will attempt to keep
any chain breaks aligned. This behavior can be tuned by setting the break break bonus parameter. See
Alignment.align() for more information.

Useful SALIGN information and commands

The Alignment.salign() command uses position-position dissimilarity scores (except when similarity flag

is switched on), as opposed to similarity scores. This convention applies to all the features, including the
residue-residue similarities read from the rr file; however, if a residue type – residue type similarity matrix is
read in, it is automatically converted into the distance matrix by D = maxi,j Si,j − S. In addition, it is also
scaled linearly such that the residue–residue dissimilarity scores range from 0 to 1 (to facilitate weighting
this feature with other features).

For each pairwise alignment, the weight matrix W has dimensions N and M that correspond to the lengths
of the sub-alignments to be aligned based on the weight matrix W . The dissimilarity score for aligning
position i with position j is calculated as Wi,j =

∑

f [
ωf∑
f ωf

W f
i,j] + gi,j , where the sum runs over all selected

features f , and g is a function that may be used to correct the Wi,j score for the presence of gaps within
the sub-alignments (see below). A feature f is selected when its weight ωf (specified in feature weights)
is non-zero. The matrices W f are normalized to have the mean of 0 and standard deviation of 1 when
normalize pp scores is True, but it is recommended not to use this option for now (i.e., use feature weights

to scale the contributions of the different features to the final W). The weights of 1 will weigh the different
features approximately evenly (the residue-residue dissimilarities of feature 1 are scaled to a range from 0 to
1, the position differences of feature 2 are in angstroms, the fractional solvent accessibility scores of feature
3 and the secondary structure scores of feature 4 range from 0 to 2, and the DRMS difference of feature 5 is
expressed in angstroms).

If you enable verbose logging with log.verbose(), there will be more output in the ’log’ file, such as
the dendrogram. The dendrogram can also be written out in a separate file by specifying the file name to
dendrogram file.

Argument output can contain the following values:

• ’ALIGNMENT’: the alignments in the first n − 2 stages of the pairwise alignment of sub-alignments are
written out.

• ’QUALITY’: the final alignment is used to obtain pairwise least-squares superpositions and the corre-
sponding average and minimal numbers of pairs of aligned residues that are within rms cutoff Å in
all pairs of aligned structures. These numbers can be used as absolute quality measures for the final
multiple alignment. This option requires the coordinate files for the aligned proteins.

6.16. THE ALIGNMENT CLASS: COMPARISON OF SEQUENCES AND STRUCTURES 177

If write fit is True, the fitted atom files are written out in their fitted orientations. For this and other options
below, also read the text above.

If output weights file is specified, the dynamic programming weight matrix is written out into the file. (If it
is None, no file is written out.)

If current directory is True, the output pdb.fit files will be written to the current directory. Otherwise, the
output will be in the directory with the original files9.

If write whole pdb is True, the whole PDB files are written out10; otherwise only the parts corresponding to
the aligned sequences are output.

If fit is False, the initial superposition is not changed. This is useful when all the structures have to be
compared with a given alignment as is, without changing their relative orientation.

If fit on first is True, the structures are fit to the first structure according to the final alignment before they
are written out.

If improve alignment is False, the initial alignment is not changed, though the structures may still be su-
perimposed if fit = True. This is useful when all the structures have to be superimposed with the initial
alignment.

6.16.27 Alignment.get suboptimals() — parse suboptimal alignments file

get suboptimals(f, align block=0)

This command, given an open Python file, will read the alignments (from Alignment.salign()) in that file
into the alignment object, one by one. (The first such alignment is the optimal alignment for reference; the
remainder are the suboptimal alignments.) The alignment object itself is returned. The alignment must
contain only the two sequences which correspond to the alignment from which the suboptimal alignment
file was originally generated, in the case of a simple pairwise alignment. If the alignment was originally
generated as an alignment of two previously-aligned blocks, then the alignment must contain the same set
of sequences, and align block must be set to the same value as when the alignment was generated.

Example: See Alignment.salign() command.

6.16.28 Alignment.to profile() — convert alignment to profile format

to profile()

This command will convert the alignment, currently in memory, into the profile format. For more details on
the profile format, see Profile.read().

Example: examples/commands/aln to prof.py

from modeller import *

env = Environ()

Read in the alignment file

aln = Alignment(env)

aln.append(file=’toxin.ali’, alignment_format=’PIR’, align_codes=’ALL’)

Convert the alignment to profile format

9This won’t work in combination with write whole pdb = False for structures that were added to the alignment with
Alignment.append model(), since such inputs may not have an atom file to extract the directory from. In this case the outputs
will end up in the current directory.

10Any structures that were added with Alignment.append model() will need to have their corresponding atom files available, so
that the originals can be reread at this point.

https://salilab.org/modeller/examples/commands/aln_to_prof.py

178 CHAPTER 6. MODELLER COMMAND REFERENCE

prf = aln.to_profile()

Write out the profile

in text file

prf.write(file=’alntoprof.prf’, profile_format=’TEXT’)

in binary format

prf.write(file=’alntoprof.bin’, profile_format=’BINARY’)

6.16.29 Alignment.segment matching() — align segments

segment matching(file, root name, file ext, file id, align block, segment report,

segment cutoff, segment shifts, segment growth n, segment growth c, min loop length,

rr file=’$LIB/as1.sim.mat’)

This command enumerates alignments between two blocks of sequences. More precisely, it enumerates the
alignments between the segments in the first block and the sequences in the second block. The segments can
be moved to the left and right as well as lengthened and shortened, relative to the initial alignment. The
regions not in segments or not aligned with segments are left un-aligned, possibly to be modeled as insertions.
Typically, the first block of sequences corresponds to structures, the segments to secondary structure elements
in the first block, and the second block to the sequences one of which is to be modeled later on. The command
is useful for generating many alignments which can then be used by another Modeller script to generate
and evaluate the corresponding 3D models.

All the sequences and segments are defined in the alignment array. The first block of sequences, the ones
with segments, are the first align block sequences. The regions corresponding to the segments are defined
by the last entry in the alignment as contiguous blocks of non-gap residues. Any standard single character
residue code may be used. The segments must be separated by gap residues, ‘-’. The remaining sequences
from align block + 1 to NSEQ− 1 are the second block of sequences. The alignment of the sequences within
the two blocks does not change. A sample alignment file is

_aln.pos 10 20 30 40 50 60

7rsa KETAAAKFERQHMDSSTSAASSSNYCNQMMKSRNLTKDRCKPVNTFVHESLADVQAVCSQKNVAC-KN

edn ---KPPQFTWAQWFETQHINMTSQQCTNAMQVINNYQRRCKNQNTFLLTTFANVVNVCGNPNMTCPSN

templ --HHHHHHHHHHH-----------GG

_consrvd * * * * * *** *** * * ** * * *

_aln.p 70 80 90 100 110 120 130

7rsa -GQTNCYQSYSTMSITDCRETGSS--KYPNCAYKTTQANKHIIVACEGN---------PYVPVHFDAS

edn KTRKNCHHSGSQVPLIHCNLTTPSPQNISNCRYAQTPANMFYIVACDNRDQRRDPPQYPVVPVHLDRI

templ GG

_consrvd ** * * * * * ** * * ** **** * **** *

_aln.pos

7rsa V

edn I

templ G

_consrvd

The enumeration of alignments explores all possible combinations of alignments between each segment and
the 2nd block of sequences: The starting position of each segment i is varied relative to the input alignment

6.16. THE ALIGNMENT CLASS: COMPARISON OF SEQUENCES AND STRUCTURES 179

in the interval from segment shift[2i− 1] to segment shift[2i]. There has to be at least min loop length[i] and
min loop length[i + 1] residues that are not in any segment before and after the i-th segment, respectively.
The location of the N-terminus of segment i is varied relative to the location in the input alignment in the
interval from segment growth n[2i − 1] to segment growth n[2i]. Similarly, the location of the C-terminus of
segment i is varied relative to the location in the input alignment in the interval from segment growth c[2i−1]
to segment growth c[2i]. The shortening and lengthening of the segments may be useful in determining the
best anchor regions for modeling of a loop.

Each alignment is scored according to the similarity scoring matrix specified by filename rr file. This matrix
may contain residue-gap scores, the gap being residue type 21; otherwise the value is set to the smallest value
in the matrix. The score for an alignment is obtained by summing scores only over all alignment positions
corresponding to the segments (no gap penalty is added for loops). When there is more than one sequence
in any of the two blocks, the position score is an average of all pairwise comparisons between the two blocks
of sequences. In the case where the number of positions in the alignment changes (i.e., the segments grow
or shorten), the scores are not comparable to each other. It is feasible to enumerate on the order of 1010

different alignments in less than one hour of CPU time.

In general, two runs are required. In the first run, the alignments are scored and a histogram of the scores is
written to file file. Then this file must be inspected to determine the cutoff segment cutoff. In the second run,
all the alignments with a score higher than segment cutoff are written to files in the PIR format, using the
standard file naming convention: root namefile idnnnn0000file ext, where nnnn is the alignment file counter.
In addition, the alignments are also written out in the PAP format for easier inspection by eye. Thus,
segment cutoff has to be set to a very large value in the first run, to avoid writing alignment files. During
a run, a message is written to the log every segment report alignments; this is useful for knowing what is
going on during very long runs.

Example: examples/commands/segment matching.py

Example for: Alignment.segment_matching()

from modeller import *

log.level(1, 1, 1, 1, 0)

env = Environ()

aln = Alignment(env, file=’ednf2.pap’, align_codes=(’7rsa’, ’edn’, ’templ’),

alignment_format=’PAP’, remove_gaps=True)

aln.segment_matching(file=’segmatch.dat’,

align_block=1, rr_file=’$(LIB)/as1.sim.mat’,

segment_shifts=(-8, 8, 0, 0),

segment_growth_n=(0, 0, 0, 0),

segment_growth_c=(0, 0, 0, 0),

min_loop_length=(0,2,0),

segment_report=1000000, segment_cutoff=0,

root_name=’segmatch’, file_ext=’.ali’, file_id=’default’)

https://salilab.org/modeller/examples/commands/segment_matching.py

180 CHAPTER 6. MODELLER COMMAND REFERENCE

6.17 The Sequence class: a single sequence within an alignment

The Sequence class contains a single sequence, in a model (see Section 6.6) or in an alignment (see Section 6.16).

For alignment template structures (i.e., sequences for which a structure is also available) see the Structure

class in Section 6.18.

Example: examples/python/alnsequence.py

Example for alnsequence objects

from modeller import *

env = Environ()

aln = Alignment(env, file=’../commands/toxin.ali’)

print("Alignment contains %d sequences:" % len(aln))

for seq in aln:

print(" Sequence %s from %s contains %d residues" \

% (seq.code, seq.source, len(seq)))

6.17.1 Sequence.range — residue range

This is a pair of residue:chain strings, which identify the starting and ending residues and chains to read
from a PDB file, when reading the structure to match the sequence. This matches the pair specified in a
PIR alignment file header (see Section B.1) and in the model segment argument to Model.read().

6.17.2 Sequence.code — alignment code

This is a short text which identifies the sequence. Often, the PDB code followed by the chain ID (if any) is
used. See also Section B.1.

6.17.3 Sequence.atom file — PDB file name

This gives the name of the PDB file containing the associated 3D structure for the sequence, if available.

6.17.4 Sequence.source — source organism

This gives the name of the organism from which the sequence was obtained, if available.

6.17.5 Sequence.name — protein name

This gives the full name of the protein, if available.

6.17.6 Sequence.prottyp — protein sequence type

This gives the type of the sequence, usually sequence for a simple sequence, or structureX for a sequence
which also has known 3D structure.

6.17.7 Sequence.pdb accession — PDB accession code

The PDB accession code of the associated structure, or blank if unknown or the structure is not deposited
in PDB.

https://salilab.org/modeller/examples/python/alnsequence.py

6.17. THE SEQUENCE CLASS: A SINGLE SEQUENCE WITHIN AN ALIGNMENT 181

6.17.8 Sequence.resolution — structure resolution

The resolution of the associated X-ray structure, or -1.0 if unknown or not applicable.

6.17.9 Sequence.rfactor — R factor

The R factor of the associated X-ray structure, or -1.0 if unknown or not applicable.

For alignment sequences and structures, this information is read from the PIR alignment file. For models, it
is read from the PDB records by Model.read().

6.17.10 Sequence.residues — list of all residues in the sequence

This is a standard Python list of all the residues in the sequence. This can be used to query individual
residue properties (e.g. amino acid type) or to specify residues for use in restraints, etc.

Residues can be individually accessed in two ways:

• A string of the form ’RESIDUE #[INS][:CHAIN ID]’, where RESIDUE # is a residue number (generally
an integer, although hybrid-36 notation is also understood) and INS an optional insertion code, as they
occur in the PDB, mmCIF, or BinaryCIF file of a model11; the optional CHAIN ID is the single
character chain id as it occurs in the PDB file. For example, if ’s’ is a Sequence object, PDB residue
’10’ in chain ’A’ is given by ’s.residues[’10:A’]’; if the chain has no chain id, ’s.residues[’10’]’
would be sufficient. Note that the quotes are required to force the use of PDB numbers.

• By numeric index, starting from zero, in standard Python fashion. For example, if ’s’ is a Sequence ob-
ject, ’s.residues[1]’ is the second residue. Contrast with ’s.residues[’1’]’ above, which returns
the residue with PDB number ’1’.

See Section 6.20 for more information about Residue objects. See also Model.residue range(), for getting
a contiguous range of residues in a model.

6.17.11 Sequence.chains — list of all chains in the sequence

This is a standard Python list of all the chains in the model. You can index this list either in standard
Python fashion, or by using the one-letter PDB chain ID, for example if ’s’ is a Sequence object, and the
first chain has ID ’A’, both ’s.chains[0]’ and ’s.chains[’A’]’ will index this chain.

See Section 6.19 for more information about Chain objects.

Example: See Selection.assess dope() command.

6.17.12 Sequence.transfer res prop() — transfer residue properties

transfer res prop()

The predicted secondary structure, along with the confidence of prediction, of this sequence is transferred to
all other sequences in the alignment. Only available for sequences in alignments.

6.17.13 Sequence.get num equiv() — get number of equivalences

get num equiv(seq)

11residue numbers in mmCIF or BinaryCIF refer to author-provided values, if available (e.g. atom site.auth seq id), otherwise to
label seq id.

https://www.python.org/
http://cci.lbl.gov/hybrid_36/
https://www.python.org/
https://www.python.org/
https://www.python.org/

182 CHAPTER 6. MODELLER COMMAND REFERENCE

This returns the number of identical aligned residues between this sequence and seq, which must be another
Sequence object from the same alignment. Only available for sequences in alignments.

Example: See Alignment.id table() command.

6.17.14 Sequence.get sequence identity() — get sequence identity

get sequence identity(seq)

This returns the percentage sequence identity between this sequence and seq, which is defined as the number
of identical aligned residues divided by the length of the shorter sequence. Only available for sequences in
alignments.

Example: See Alignment.id table() command.

6.18. THE STRUCTURE CLASS: A TEMPLATE STRUCTURE WITHIN AN ALIGNMENT 183

6.18 The Structure class: a template structure within an alignment

The Structure class contains a single template structure from an alignment. It derives from the alignment
Sequence class and is used in a very similar way (see Section 6.17 for more details), although it additionally
provides special methods to handle structures, and atom information (just as for Model objects) is available, unlike
regular alignment sequences which only deal with residues.

6.18.1 Structure.write() — write out PDB file

write(file)

The template structure is written out to the named file, in PDB format. file can be either a file name or a
modfile.File() object open in write mode (in which case the structure is appended to the file).

6.18.2 Structure.reread() — reread coordinates from the atom file

reread()

The current coordinates in memory are ’forgotten’, and they are reread from the atom file
(Sequence.atom file). This is useful if you want to restore the original template orientation after some
command which changes it (e.g., Alignment.check()).

6.18.3 Structure.read() — read coordinates from a PDB file

read(file, io=None)

Normally, coordinates are read automatically from Sequence.atom file when needed (or when
Structure.reread() is called). This function instead reads coordinates explicitly in PDB format from
file, which is either a filename or a readable file handle (see modfile.File()), ignoring atom file. This is
useful if you want to load an alternative conformation, or you want to read the structure from a file handle
rather than a named file. (The sequence of the PDB must still match that in the alignment, of course.)

Note that Structure.reread(), and certain structural alignment functions (Alignment.salign() and
Alignment.malign3d()) will overwrite this conformation with that named in Sequence.atom file.

184 CHAPTER 6. MODELLER COMMAND REFERENCE

6.19 The Chain class: a single chain in a model or alignment

The Chain class holds information about a single chain, in a Model (see Sequence.chains), an alignment sequence,
or an alignment template structure.

Two Chain objects are considered equal if and only if they represent the same chain in the same sequence.

Example: examples/python/chains.py

Example for ’chain’ objects

from modeller import *

from modeller.scripts import complete_pdb

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

mdl = complete_pdb(env, "1b3q")

Print existing chain IDs and lengths:

print("Chain IDs and lengths: " \

+ str([(c.name, len(c.residues)) for c in mdl.chains]))

Set new chain IDs:

mdl.chains[’A’].name = ’X’

mdl.chains[’B’].name = ’Y’

Write out chain sequences:

for c in mdl.chains:

c.write(file=’1b3q%s.chn’ % c.name, atom_file=’1b3q’,

align_code=’1b3q%s’ % c.name)

6.19.1 Chain.name — chain ID

This is the name (ID) of the chain. Modeller allows for chain names up to 20 characters, but note that
only a single character can be stored in traditional PDB files (two characters if IOData.hybrid36 is set); if
you wish to use longer chain IDs, use mmCIF format instead of PDB.

6.19.2 Chain.residues — all residues in the chain

This is a list of all residues in the chain, as Residue objects (see Section 6.20). For example,
’m.chains[’A’].residues[’10’]’ would yield the residue with PDB number 10 in chain A in the model
’m’12.

6.19.3 Chain.atoms — all atoms in the chain

This is a list of all atoms in the chain, as Atom objects (see Section 6.23). (Not available for alignment
sequences.)

12Note that ’m.chains[’A’].residues[’10’]’ in most cases is the same as ’m.residues[’10:A’]’. However, if there are multiple
chains in the model called ’A’ the first syntax will return residue 10 in the first chain called A (and so will fail if that chain does not
contain this residue) whereas the second will look for the first residue numbered 10 in any of the A chains. (Generally speaking, you
should avoid having duplicate chain IDs or residue numbers!)

https://salilab.org/modeller/examples/python/chains.py

6.19. THE CHAIN CLASS: A SINGLE CHAIN IN A MODEL OR ALIGNMENT 185

6.19.4 Chain.filter() — check if this chain passes all criteria

filter(structure types=’structure’, minimal resolution=99.0, minimal chain length=30,

max nonstdres=10, chop nonstd termini=True, minimal stdres=30)

This checks the chain with various criteria, and returns True only if all of them are met. This is useful in
combination with Chain.write() to produce sequences of chains. See also Model.make chains().

structure types refers to the experimental method used to determine the structure. The following types
are recognized: ’structureX’ for X-ray, ’structureN’ for NMR and ’structureM’ for model, ’structureE’ for
electron microscopy, ’structureF’ for fiber diffraction, ’structureU’ for neutron diffraction, ’structure’ for any
structure.

chop nonstd termini, if set, removes a single non-standard residue (if present) from each terminus of the chain.
This is done before the chain length criteria below are considered.

minimal resolution refers to the cut-off value of the experimental resolution of the structure. Structures with
resolutions larger than this threshold are not accepted.

minimal chain length refers to the lower limit of the chain length. Chains whose lengths are smaller than this
value are not accepted.

max nonstdres sets the maximum limit of non-standard residues that is tolerated.

minimal stdres sets the minimum number of standard residues that are required to process the chain. Chains
that don’t have at least this number of standard residues are not accepted.

Example: examples/commands/make chains.py

Example for: chain.filter(), chain.write()

This will read a PDB file (segment), and write out all of its chains

satisfying the listed conditions into separate alignment files in the

PIR format.

from modeller import *

env = Environ()

mdl = Model(env, file=’../atom_files/pdb1lzd.ent’)

for c in mdl.chains:

if c.filter(minimal_chain_length=30, minimal_resolution=2.0,

minimal_stdres=30, chop_nonstd_termini=True,

structure_types=’structureN structureX’):

filename = ’1lzd%s.chn’ % c.name

print("Wrote out " + filename)

atom_file, align_code = c.atom_file_and_code(filename)

c.write(filename, atom_file, align_code, format=’PIR’,

chop_nonstd_termini=True)

6.19.5 Chain.write() — write out chain sequence to an alignment file

write(file, atom file, align code, comment=’’, format=’PIR’, chop nonstd termini=True)

This writes out the residue sequence of the chain to an alignment file.

file can be either a file name or a modfile.File() object open in write mode (in which case the structure is
appended to the file).

https://salilab.org/modeller/examples/commands/make_chains.py

186 CHAPTER 6. MODELLER COMMAND REFERENCE

atom file and align code specify the name of the chain’s associated atom file, and its alignment code, respec-
tively; suitable values can be obtained from Chain.atom file and code(). comment, if given, specifies a
comment to prepend to the alignment file.

format specifies the format of the output file; see Alignment.write(). PIR or FASTA formats are supported.

chop nonstd termini trims non-standard terminal residues in exactly the same way as for Chain.filter().

This command is not available for alignment sequences, because the PDB residue numbers (only available
in template structures or models) are needed to write the PIR header.

Example: See Chain.filter() command.

6.19.6 Chain.atom file and code() — get suitable names for this chain

atom file and code(filename)

Given a model filename, this returns suitable atom file and align code values for this chain, for example for
giving to Chain.write(). Path names are stripped, and duplicate chain IDs are handled.

For example, a model filename of /home/user/test.pdb may return test for atom file and testA for
align code when called for the A chain.

Example: See Chain.filter() command.

6.19.7 Chain.join() — join other chain(s) onto this one

join(chain)

Given another chain from the same model, alignment structure, or alignment sequence, this command will
remove any chain breaks between the two chains. The passed chain (and any other chains between the two)
will become part of the first. For example, if in a model containing five chains A, B, C, D and E chains D
and B are joined, the model will end up with chains A, B, and E; former chains C and D will become part
of the B chain.

Note that the chain must follow this chain in the sequence (e.g., you can join chain B or C onto chain A,
but not chain A onto B or C). If it does not, or it is from a different sequence, a ValueError is raised.

Note that this does not renumber the residues; you will need to do that separately if you don’t want duplicate
residue numbers.

Note that for models this does not affect the model topology — any existing C-terminal or N-terminal patches
(e.g., OXT atoms) are not removed, and no bonds are created between the termini of the joined chains (so
TER records will be missed when writing out the model as a PDB file, for example). To regenerate the
topology, write out the model (Model.write()) and then read it back in (complete pdb()).

Example: examples/commands/join chains.py

Example for: Chain.join()

This will take a model containing two chains and join them into one.

from modeller import *

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

mdl = Model(env)

mdl.read(file=’2abx’)

https://salilab.org/modeller/examples/commands/join_chains.py

6.19. THE CHAIN CLASS: A SINGLE CHAIN IN A MODEL OR ALIGNMENT 187

Join the B chain onto the end of the A chain

mdl.chains[’A’].join(mdl.chains[’B’])

Renumber all residues in the new chain starting from 1

for num, residue in enumerate(mdl.chains[’A’].residues):

residue.num = ’%d’ % (num + 1)

mdl.write(file=’2abx-join.pdb’)

188 CHAPTER 6. MODELLER COMMAND REFERENCE

6.20 The Residue class: a single residue in a model or alignment

The Residue class holds information about a single residue in a sequence (see Sequence.residues).

Two Residue objects are considered equal if and only if they represent the same residue in the same sequence.

Example: examples/python/residues.py

Example for ’residue’ objects

from modeller import *

from modeller.scripts import complete_pdb

def analyze_seq(description, seq):

"""Simple ’analysis’ of a sequence of residues, from a model or alignment"""

numcys = 0

for res in seq:

if res.pdb_name == ’CYS’:

numcys += 1

print("%s contains %d residues, of which %d are CYS" \

% (description, len(seq), numcys))

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

mdl = complete_pdb(env, "1fas")

’mdl.residues’ is a list of all residues in the model

print("1-letter code of 1st residue: " + mdl.residues[0].code)

print("PDB name of residue ’10’ in chain A: " + mdl.residues[’10:A’].pdb_name)

Get the first aligned sequence from a file

aln = Alignment(env, file=’../commands/toxin.ali’)

firstseq = aln[0]

Analyze all residues in the model, a subset, and all residues in the

alignment sequence

analyze_seq("Model 1fas", mdl.residues)

analyze_seq("First 10 residues of 1fas", mdl.residue_range(’1:A’, ’10:A’))

analyze_seq("Aligned sequence %s" % firstseq.code, firstseq.residues)

6.20.1 Residue.name — internal (CHARMM) residue type name

This is the name used internally to identify the residue type, and corresponds to the CHARMM 4-letter (or
shorter) name used in ’restyp.lib’ and ’top heav.lib’. These names are a superset of those used in
PDB.

6.20.2 Residue.pdb name — PDB (IUPAC) type name

This is the 3-letter name of the residue, as used in PDB.

https://salilab.org/modeller/examples/python/residues.py

6.20. THE RESIDUE CLASS: A SINGLE RESIDUE IN A MODEL OR ALIGNMENT 189

6.20.3 Residue.code — One-letter residue type code

This is the one-letter residue type code, as used in alignment files.

6.20.4 Residue.hetatm — HETATM indicator

If True, this residue is marked in PDB as a HETATM residue rather than an ATOM residue.

6.20.5 Residue.index — internal integer index

This is the index used internally to identify the residue; residues are numbered sequentially starting from 1.

Example: examples/commands/write pdb xref.py

This demonstrates relating PDB residue numbers with residue indices.

from modeller import *

log.verbose()

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

mdl = Model(env, file=’2abx’)

print("Mapping from residue indices to PDB residue and chain names:")

for r in mdl.residues:

print("%6d %3s:%s %s" % (r.index, r.num, r.chain.name, r.pdb_name))

6.20.6 Residue.num — PDB-style residue number plus insertion code

This is the full number of the residue, as used in PDB, comprising an integer number (positive or negative)
and an optional single-character insertion code, generally a letter from A to Z. (Not available for alignment
sequences.)

This is a string property (not an integer). Thus, both ’1’ and ’1A’ are valid residue numbers, but a Python
integer (without quotes) is not.

To access just the residue number or the insertion code, see Residue.intnum or Residue.inscode.

Example: See Residue.index command.

6.20.7 Residue.intnum — PDB-style residue number

This is the number of the residue, as used in PDB, as an integer. (Not available for alignment sequences.)
It does not include the insertion code (see Residue.inscode or Residue.num.)

6.20.8 Residue.inscode — PDB-style residue insertion code

This is the (optional) insertion code of the residue, as used in PDB, generally a letter from A to Z. (Not
available for alignment sequences.)

https://salilab.org/modeller/examples/commands/write_pdb_xref.py

190 CHAPTER 6. MODELLER COMMAND REFERENCE

6.20.9 Residue.curvature — Mainchain curvature

The mainchain curvature, as defined in Model.write data (see the ’CRV’ option). Only available for
alignment structure residues. This is zero until an alignment using structure-dependent gap penalties is
carried out (Alignment.align2d or Alignment.salign with gap function = True).

6.20.10 Residue.atoms — all atoms in the residue

This is a list of all atoms in the residue, as Atom objects (see Section 6.23). (Not available for alignment
sequences.)

6.20.11 Residue.chain — chain object

This is the Chain object to which the residue belongs. See Section 6.19.

6.20.12 Residue.phi — φ dihedral angle

This is a Dihedral object, with information about the residue’s φ dihedral. (If no φ dihedral is defined for
this residue, it is the special Python value None instead.) See Section 6.21 for more information on Dihedral

objects. Not available for alignment sequence residues.

6.20.13 Residue.psi — ψ dihedral angle

This is a Dihedral object, with information about the residue’s ψ dihedral; see Residue.phi for more infor-
mation. Not available for alignment sequence residues.

6.20.14 Residue.omega — ω dihedral angle

This is a Dihedral object, with information about the residue’s ω dihedral; see Residue.phi for more infor-
mation. Not available for alignment sequence residues.

6.20.15 Residue.alpha — α dihedral angle

This is a Dihedral object, with information about the residue’s α dihedral (i.e., the virtual dihedral between
four successive Cα atoms, starting with the previous residue); see Residue.phi for more information. Not
available for alignment sequence residues.

6.20.16 Residue.chi1 — χ1 dihedral angle

This is a Dihedral object, with information about the residue’s χ1 dihedral; see Residue.phi for more infor-
mation. Not available for alignment sequence residues.

6.20.17 Residue.chi2 — χ2 dihedral angle

This is a Dihedral object, with information about the residue’s χ2 dihedral; see Residue.phi for more infor-
mation. Not available for alignment sequence residues.

6.20.18 Residue.chi3 — χ3 dihedral angle

This is a Dihedral object, with information about the residue’s χ3 dihedral; see Residue.phi for more infor-
mation. Not available for alignment sequence residues.

https://www.python.org/

6.20. THE RESIDUE CLASS: A SINGLE RESIDUE IN A MODEL OR ALIGNMENT 191

6.20.19 Residue.chi4 — χ4 dihedral angle

This is a Dihedral object, with information about the residue’s χ4 dihedral; see Residue.phi for more infor-
mation. Not available for alignment sequence residues.

6.20.20 Residue.chi5 — χ5 dihedral angle

This is a Dihedral object, with information about the residue’s χ5 dihedral; see Residue.phi for more infor-
mation. Not available for alignment sequence residues.

6.20.21 Residue.get aligned residue() — get aligned residue in another sequence

get aligned residue(seq)

Given a sequence (or template structure) in the same alignment, this returns another Residue object, for
the residue in that sequence which is aligned with this residue. (If there is a gap in the other sequence, None
is returned instead.) Not available for model sequences.

See also Alignment.positions.

6.20.22 Residue.add leading gaps() — add gap(s) before this residue

add leading gaps(ngap=1)

This adds ngap gaps in the alignment, immediately preceding this residue. Not available for model sequences.

6.20.23 Residue.add trailing gaps() — add gap(s) after this residue

add trailing gaps(ngap=1)

This adds ngap gaps in the alignment, immediately after this residue. (Since it makes no sense to have gaps
aligned with gaps at the end of the alignment, this will have no effect when called for the last residue in the
sequence.) Not available for model sequences.

6.20.24 Residue.remove leading gaps() — remove gap(s) before this residue

remove leading gaps(ngap=1)

This removes ngap gaps from the alignment, immediately before this residue. Not available for model
sequences.

6.20.25 Residue.remove trailing gaps() — remove gap(s) after this residue

remove trailing gaps(ngap=1)

This removes ngap gaps from the alignment, immediately after this residue. (This usually has no effect if
called for gaps after the last residue in a sequence, since those gaps are necessary in order to line up with
other sequences in the alignment.) Not available for model sequences.

192 CHAPTER 6. MODELLER COMMAND REFERENCE

6.20.26 Residue.get leading gaps() — get number of gaps before this residue

get leading gaps()

This returns the number of gaps in the alignment immediately preceding this residue. Not available for
model sequences.

6.20.27 Residue.get trailing gaps() — get number of gaps after this residue

get trailing gaps()

This returns the number of gaps in the alignment immediately following this residue. Not available for model
sequences.

6.21. THE DIHEDRAL CLASS: A SINGLE DIHEDRAL IN A MODEL OR ALIGNMENT 193

6.21 The Dihedral class: a single dihedral in a model or alignment

The Dihedral class holds information about one of a residue’s dihedral angles. See Residue.phi for more information
on accessing these objects.

6.21.1 Dihedral.value — current value in degrees

This is the current value of the dihedral angle in degrees, and ranges from -180.0 to 180.0.

6.21.2 Dihedral.atoms — atoms defining the angle

This is the list of the four atoms which define the dihedral angle.

6.21.3 Dihedral.dihclass — integer dihedral class

This is the current value of the dihedral class, as defined in ’modlib/resdih.lib’.

194 CHAPTER 6. MODELLER COMMAND REFERENCE

6.22 The Point class: a point in Cartesian space

The Point class specifies an arbitrary point in the Cartesian space of a model.

Point objects can be created by calling Model.point().

6.22.1 Point.x — x coordinate

This is the current x coordinate, in angstroms, of the point. Similar members exist for the y and z coordinates.
You can also assign to Point.x to move the point in space.

6.22.2 Point.select sphere() — select all atoms within radius

select sphere(radius)

This returns a new selection (see Section 6.9) containing all atoms currently within the given distance from
the point. Compare with Selection.select sphere().

Example: See Selection() command.

6.23. THE ATOM CLASS: A SINGLE ATOM IN A MODEL OR STRUCTURE 195

6.23 The Atom class: a single atom in a model or structure

The Atom class holds information about a single atom, in a Model (see Model.atoms) or an alignment template
structure (Structure class). The Atom class is derived from the Point class, and thus all Point methods (e.g.,
Point.select sphere()) can also be called on Atom objects, and all Point members (e.g.Point.x) are available. See
Section 6.22.

Two Atom objects are considered equal if and only if they represent the same atom in the same structure.

Example: examples/python/atoms.py

Example for ’atom’ objects

from modeller import *

from modeller.scripts import complete_pdb

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

mdl = complete_pdb(env, "1fas")

’mdl.atoms’ is a list of all atoms in the model

print("Name of C-alpha atom in residue 4 in chain A: %s " \

% mdl.atoms[’CA:4:A’].name)

a = mdl.atoms[0]

print("Coordinates of first atom: %.3f, %.3f, %.3f" % (a.x, a.y, a.z))

Each ’residue’ object lists its own atoms, as does each chain

a = mdl.residues[’10:A’].atoms[0]

print("Biso for first atom in residue 10 in chain A %.3f" % a.biso)

a = mdl.chains[0].residues[-1].atoms[-1]

print("Biso for last atom in last residue in first chain: %.3f" % a.biso)

6.23.1 Atom.dvx — objective function derivative

This is the first derivative of the objective function, from the last energy function, with respect to the x
coordinate of the atom. Similar members exist for dvy and dvz. (Only available for models, not template
structures.)

6.23.2 Atom.vx — x component of velocity

This is the x component of the velocity, from the most recent molecular dynamics simulation. Similar
members exist for vy and vz. (Only available for models, not template structures.)

6.23.3 Atom.biso — isotropic temperature factor

This is the isotropic temperature factor (Biso), which can be set by Selection.energy(),
Model.write data() or Model.make region().

Example: See Model.write data() command.

https://salilab.org/modeller/examples/python/atoms.py

196 CHAPTER 6. MODELLER COMMAND REFERENCE

6.23.4 Atom.accessibility — atomic accessibility

This is the atomic accessibility. It is zero for new structures, but can be calculated by Model.write data().

6.23.5 Atom.occ — occupancy

This is the crystallographic occupancy of the atom.

6.23.6 Atom.charge — electrostatic charge

This is the electrostatic charge of the atom. (Only available for models, not template structures.)

6.23.7 Atom.mass — mass

This is the mass of the atom. (Only available for models, not template structures.)

6.23.8 Atom.name — PDB name

This is the name used to refer to the atom in PDB.

6.23.9 Atom.type — CHARMM atom type

This is a CHARMM AtomType object (see Section 6.24), which tracks per-type rather than per-atom
properties such as the element symbol, radius and atomic mass. If the model has not yet had CHARMM
atom types assigned, it is None.

The atom type can also be changed by assigning a Charmm atom name (as a string, such as ’CT1’), or
None, to it. This can be useful when using BLK residues, which otherwise use the same atom type (‘undf’)
for every atom.

(Only available for models, not template structures.)

6.23.10 Atom.residue — residue object

This returns the Residue object to which this atom belongs. See Section 6.20.

6.23.11 Atom.get equivalent atom() — get equivalent atom in another residue

get equivalent atom(res)

Given another Residue object, this returns an Atom object representing the structurally equiva-
lent atom in that residue, or None if no such atom can be found. (This is primarily used by
Restraints.make distance().) The rules for determining equivalency are:

• If either residue is non-standard, but is denoted as being ’similar’ to a standard residue with the STD
column in ’modlib/restyp.lib’, treat it below as if it is the similar standard residue (e.g., ASX is
treated like ASN).

• If the two residues are of the same type, or either residue has no topology (e.g., it is a BLK residue),
find an atom with the same name.

• If the two residues are both standard amino acids, use the mapping defined in ’modlib/atmeqv.lib’

(this is not always a simple match on name; for example, CYS SG is equivalent to ASP CG, since they
tend to be similarly placed in space).

• Otherwise, no atom is treated as equivalent (even if the names are the same; for example, the O atom
in water residues is not equivalent to the backbone O in standard amino acids).

6.24. THE ATOMTYPE CLASS: A CHARMM ATOM TYPE 197

6.24 The AtomType class: a CHARMM atom type

The AtomType class holds information about a CHARMM atom type.

6.24.1 AtomType.name — CHARMM name

The CHARMM name of the atom type, such as CT1, NR1, etc.

6.24.2 AtomType.mass — atomic mass

The mass of each atom of this type, in atomic units. This can be modified.

6.24.3 AtomType.element — element

The 1 or 2 letter element symbol of each atom of this type. This can be modified.

198 CHAPTER 6. MODELLER COMMAND REFERENCE

6.25 The EnergyProfile class: a per-residue energy profile

The EnergyProfile class holds a per-residue energy profile, as returned by Selection.get dope profile(),
Selection.get dopehr profile(), or Model.get normalized dope profile().

An energy profile acts like a Python list; each element in the list corresponds to a residue in the model for which
the profile was calculated. Each element is an object that contains three attributes. energy is the contribution to
the energy function that can be attributed to restraints on this residue; num restraints is the number of restraints
that act on this residue; normalized energy is simply the energy divided by the number of restraints.

6.25.1 EnergyProfile.min rms — minimal RMS violation

The root-mean-square of the minimal violation (see Section 5.3.1), over all restraints.

6.25.2 EnergyProfile.heavy rms — heavy RMS violation

The root-mean-square of the heavy violation (see Section 5.3.1), over all restraints.

6.25.3 EnergyProfile.get normalized() — get a normalized energy profile

get normalized()

This returns a new energy profile, in which each residue’s energy is divided by the number of restraints acting
on that residue.

6.25.4 EnergyProfile.get smoothed() — get a smoothed energy profile

get smoothed(window=1)

This returns a new energy profile, in which each residue’s energy is smoothed by weighted window aver-
aging, using its own energy and the energy of window residues either side of it; energies of residues are
weighted by how close they are to the center residue in sequence. (Note that this differs from that used by
Selection.energy().)

6.25.5 EnergyProfile.write to file() — write to file

write to file(filename)

This writes the energy profile to a named file, or an open file handle (see modfile.File()). Each line in the
file contains the index of the residue (starting from 1, not the PDB numbering) and the residue’s energy.

https://www.python.org/

6.26. THE PROFILE CLASS: USING SEQUENCE PROFILES 199

6.26 The Profile class: using sequence profiles

The Profile class holds a sequence profile. Sequence profiles are similar to multiple alignments, and can contain
gaps, but do not contain all of the information of the Alignment class. Profiles can be matched against each other
with Profile.scan() or enriched from a sequence database with Profile.build().

6.26.1 Profile() — create a new profile

Profile(env, aln=None, **vars)

This creates a new Profile object. By default, the profile is empty. However, if you give a single Alignment
object as an argument, the profile is initialized with the alignment contents (usingAlignment.to profile()),
or if you specify any keyword arguments, they are passed to Profile.read(), to read in a profile from a file.
See the Profile.scan() example.

6.26.2 Profile.read() — read a profile of a sequence

read(file, profile format)

This command will read a profile from a specified file. Two formats are supported: TEXT and BINARY.

For the format of text files, see Section B.3. Binary format files are standard HDF5 files (see Section B.4).

For TEXT files, file can be either a file name or a readable file handle (see modfile.File()). For BINARY files,
it must be a file name.

Example: examples/commands/read profile.py

Example file for: Profile.read(), Profile.to_alignment()

from modeller import *

env = Environ()

Create a new, blank, profile

prf = Profile(env)

Read in the profile file

prf.read(file=’toxin.prf’, profile_format=’TEXT’)

Convert the profile to alignment

aln = prf.to_alignment()

Write out the alignment

aln.write(file=’readprofile.pir’, alignment_format=’PIR’)

6.26.3 Profile.write() — write a profile

write(file, profile format)

https://www.hdfgroup.org/solutions/hdf5/
https://salilab.org/modeller/examples/commands/read_profile.py

200 CHAPTER 6. MODELLER COMMAND REFERENCE

This command will write a profile to a specified file, together with a number of variables that are associated
with the profile in the memory. Two formats are supported: TEXT and BINARY.

For TEXT files, file can be either a file name or a writeable file handle (see modfile.File()). For BINARY files,
it must be a file name.

Example: examples/commands/aln to prof.py

from modeller import *

env = Environ()

Read in the alignment file

aln = Alignment(env)

aln.append(file=’toxin.ali’, alignment_format=’PIR’, align_codes=’ALL’)

Convert the alignment to profile format

prf = aln.to_profile()

Write out the profile

in text file

prf.write(file=’alntoprof.prf’, profile_format=’TEXT’)

in binary format

prf.write(file=’alntoprof.bin’, profile_format=’BINARY’)

6.26.4 Profile.to alignment() — profile to alignment

to alignment()

Output: alignment

This command will convert a profile that is in memory into the alignment format (see Section B.1). The
function of this command is complimentary to Alignment.to profile(). The generated alignment is re-
turned.

Note: Not all information of a ’PIR’ format is encoded in a profile. (See Profile.read()). So converting a
profile to an alignment may need manual attention to ensure that the alignment is useful for other routines.

Example: examples/commands/read profile.py

Example file for: Profile.read(), Profile.to_alignment()

from modeller import *

env = Environ()

Create a new, blank, profile

prf = Profile(env)

Read in the profile file

prf.read(file=’toxin.prf’, profile_format=’TEXT’)

Convert the profile to alignment

aln = prf.to_alignment()

https://salilab.org/modeller/examples/commands/aln_to_prof.py
https://salilab.org/modeller/examples/commands/read_profile.py

6.26. THE PROFILE CLASS: USING SEQUENCE PROFILES 201

Write out the alignment

aln.write(file=’readprofile.pir’, alignment_format=’PIR’)

6.26.5 Profile.scan() — Compare a target profile against a database of profiles

scan(profile list file, matrix offset=0.0, profile format=’TEXT’, rr file=’$(LIB)/as1.sim.mat’,

gap penalties 1d=(-900.0, -50.0), matrix scaling factor=0.0069, max aln evalue=0.1,

aln base filename=’alignment’, score statistics=True, output alignments=True,

output score file=None, pssm weights type=’HH1’, summary file=’ppscan.sum’,

ccmatrix offset=-200, score type=’CCMAT’, psm=None)

This command scans the given target profile against a database of template profiles and reports significant
alignments; the target profile should have been read previously with the Profile.read() command.

All the profiles listed in profile list file should be in a format that is understood by Profile.read().

The profile list file should contain absolute or relative paths to the individual template profiles, one per line.

The template profiles can also be assembled into a PSSM database, that can then be read in for scanning.
The PSSM database can be created using the Environ.make pssmdb() command.

For the sake of both efficiency and speed, it is recommended to read in the template profiles as a database.
(See example). The entire PSSM database, consisting of tens of thousands of PSSMs, can be read into the
memory of an average PC.

See documentation under Profile.read() for help on profile format.

rr file is the residue-residue substitution matrix to use when calculating the position-specific scoring matrix
(PSSM). The current implementation is optimized only for the BLOSUM62 matrix.

gap penalties 1d are the gap penalties to use for the dynamic programming. matrix offset is the value to be
used to offset the substitution matrix (used in PSSM calculation). ccmatrix offset is used to offset the scoring
matrix during dynamic programming. The most optimal values for these parameters are:

matrix offset = -450 (for the BLOSUM62 matrix) ccmatrix offset = -100 gap penalties 1d = (-700, -70)

max aln evalue sets the threshold for the E-values. Alignments with e-values better than the threshold will
be written out.

aln base filename sets the base filename for the alignments. The output alignment filenames will be of the
form ALN BASE FILENAME XXXX.ali. The XXXX is a 4-digit integer (prefixed with sufficient zeroes)
that is incremented for each alignment. For example, alignment 0001.ali

score statistics is a flag that triggers the calculation of e-values. If set to False, the significance estimates for
the alignments will not be calculated. The calculation of alignment significance is similar to that used for
Profile.build(). This option can be useful when there are only a very small number of template profiles in
profile list file, insufficient to calculate reliable statistics. Also see Profile.build().

output score file is the name of a file into which to write the raw alignment scores, zscores and e-values for
all the comparisons. (If it is set to None, no such output is written.) The various columns in the output file
correspond to the following:

1. Index of the database profile

2. File name of the database profile

3. Length of the database profile

4. Logarithm of the length of the database profile

5. Alignment score

6. Length normalized z-score of the alignment

202 CHAPTER 6. MODELLER COMMAND REFERENCE

7. E-Value of the alignment

summary file is the name of a file into which to output a summary of all the significant alignments. (If it is
set to None, no such output is written.) The format of the summary file is the following:

1. File name of target profile (empty if the profile was created with Alignment.to profile())

2. Length of target profile

3. Number of the first aligned residue of the target profile

4. Number of the last aligned residue of the target profile

5. File name of the database profile

6. Length of the database profile

7. Number of the first aligned residue of the database profile

8. Number of the last aligned residue of the database profile

9. Number of equivalent positions in the alignment

10. Alignment score

11. Sequence identity of the alignment

12. Length normalized z-score of the alignment

13. E-Value of the alignment

14. Alignment file name

If output alignments is set to False, alignments will not be written out.

In addition, the following details about every significant alignment is also written out to the log file (look
for lines beginning with ’>’):

1. File name of target profile (empty if the profile was created with Alignment.to profile())

2. File name of the database profile

3. Length of the database profile

4. Alignment score

5. Sequence identity of the alignment

6. Length normalized z-score of the alignment

7. E-Value of the alignment

Example: examples/commands/ppscan.py

Example for: Profile.scan()

from modeller import *

env = Environ()

First create a database of PSSMs

env.make_pssmdb(profile_list_file = ’profiles.list’,

matrix_offset = -450,

rr_file = ’${LIB}/blosum62.sim.mat’,

pssmdb_name = ’profiles.pssm’,

profile_format = ’TEXT’,

pssm_weights_type = ’HH1’)

Read in the target profile

prf = Profile(env, file=’T3lzt-uniprot90.prf’, profile_format=’TEXT’)

https://salilab.org/modeller/examples/commands/ppscan.py

6.26. THE PROFILE CLASS: USING SEQUENCE PROFILES 203

Read the PSSM database

psm = PSSMDB(env, pssmdb_name = ’profiles.pssm’, pssmdb_format = ’text’)

Scan against all profiles in the ’profiles.list’ file

The score_statistics flag is set to false since there are not

enough database profiles to calculate statistics.

prf.scan(profile_list_file = ’profiles.list’,

psm = psm,

matrix_offset = -450,

ccmatrix_offset = -100,

rr_file = ’${LIB}/blosum62.sim.mat’,

gap_penalties_1d = (-700, -70),

score_statistics = False,

output_alignments = True,

output_score_file = None,

profile_format = ’TEXT’,

max_aln_evalue = 1,

aln_base_filename = ’T3lzt-ppscan’,

pssm_weights_type = ’HH1’,

summary_file = ’T3lzt-ppscan.sum’)

6.26.6 Profile.build() — Build a profile for a given sequence or alignment

build(sdb, gap penalties 1d=(-900.0, -50.0), matrix offset=0.0, rr file=’$(LIB)/as1.sim.mat’,

n prof iterations=3, max aln evalue=0.1, matrix scaling factor=0.0069, check profile=True,

output score file=None, gaps in target=False, score statistics=True, pssm weights type=’HH1’,

pssm file=None, window size=1024)

This command iteratively scans a database of sequences to build a profile for the input sequence or alignment.
The command calculates the score for a Smith-Waterman local alignment between the input sequence and
each of the sequences in the database. The significance of the alignment scores (e-values) are calculated
using a procedure similar to that described by [Pearson, 1998].

Alignments with e-values below max aln evalue are then added to the current alignment. A position-specific
scoring matrix is then calculated for the current alignment and is used to search the sequence database. This
procedure is repeated for n prof iterations or until there are are no significant alignments below the threshold,
whichever occurs first.

The initial sequence or alignment can be read in either in the profile format, with Profile.read(), or as an
alignment using Alignment.append(). In the latter case, the alignment has to be converted to the profile
format using Alignment.to profile().

The output contains a multiple sequence alignment (assembled) of all the homologues of the input sequence
found in the database. The output can be formatted as a profile with Profile.write() or converted into any
of the standard alignment formats using Profile.to alignment(). It can then be written out to a file with
Alignment.write().

The fit between the observed and theoretical distributions of the z-scores is calculated after each iteration and
is reported in the log file. The fit is calculated using the Kolmogorov-Smirnov D-statistic. If the check profile

flag is set to True, then the command will not proceed if the fit deviates by more than 0.04 (D-statistic).

By default, regions of the alignment that introduce gaps in the target sequence are ignored (deleted) in the
final multiple alignment. But if gaps in target is set to True, then the gaps are retained. (See below for
comments).

The scores of each alignment between the input sequence and each database sequence, from all iterations,
will be written out to the file specified in output score file (or if this is None, no such output will be written).

204 CHAPTER 6. MODELLER COMMAND REFERENCE

If pssm file is set to a file name, the PSSM (position specific scoring matrix) calculated for each iteration is
written to that file.

Comments:

1. The procedure has been optimized only for the BLOSUM62 similarity matrix.

2. The dynamic programming algorithm has been optimized for performance on Intel Itanium2 architec-
ture. Nevertheless, the calculation is sufficiently CPU intensive. It takes about 20 min for an iteration,
using an input sequence of 250aa against a database containing 500,000 sequences on an Itanium2
machine. It could take much longer on any other machine.

3. It is advisable to have gaps in target set to False when scanning against large databases, to avoid the
local alignments inserting a huge number of gaps in the final alignments.

4. The statistics will not be accurate if the database does not have sequences that represent the entire range
of lengths possible. In extreme cases, where statistics cannot be calculated at all, a StatisticsError

will be raised.

5. The method can be used for fold-assignment by first building a profile for the target sequence by
scanning against a large non-redundant sequence database (like swissprot) and then using the resulting
profile to scan once against a database of sequences extracted from PDB structures. gaps in target can
be set to True in the second step to get the complete alignments that can then be used for modeling.

See SequenceDB.read() for a discussion of the window size parameter.

Example: examples/commands/build profile.py

from modeller import *

log.verbose()

env = Environ()

#-- Prepare the input files

#-- Read in the sequence database

sdb = SequenceDB(env)

sdb.read(seq_database_file=’pdb95.fsa’, seq_database_format=’FASTA’,

chains_list=’ALL’, minmax_db_seq_len=(1, 40000), clean_sequences=True)

#-- Write the sequence database in binary form

sdb.write(seq_database_file=’pdb95.bin’, seq_database_format=’BINARY’,

chains_list=’ALL’)

#-- Now, read in the binary database

sdb.read(seq_database_file=’pdb95.bin’, seq_database_format=’BINARY’,

chains_list=’ALL’)

#-- Read in the target sequence/alignment

aln = Alignment(env)

aln.append(file=’toxin.ali’, alignment_format=’PIR’, align_codes=’ALL’)

#-- Convert the input sequence/alignment into

profile format

prf = aln.to_profile()

#-- Scan sequence database to pick up homologous sequences

prf.build(sdb, matrix_offset=-450, rr_file=’${LIB}/blosum62.sim.mat’,

gap_penalties_1d=(-500, -50), n_prof_iterations=5,

check_profile=False, max_aln_evalue=0.01, gaps_in_target=False)

#-- Write out the profile

https://salilab.org/modeller/examples/commands/build_profile.py

6.26. THE PROFILE CLASS: USING SEQUENCE PROFILES 205

prf.write(file=’buildprofile.prf’, profile_format=’TEXT’)

#-- Convert the profile back to alignment format

aln = prf.to_alignment()

#-- Write out the alignment file

aln.write(file=’buildprofile.ali’, alignment_format=’PIR’)

6.26.7 PSSMDB() — create a new PSSM database

PSSMDB(env, **vars)

This creates a new PSSMDB object. If you give any arguments to the PSSMDB() constructor, they are passed
to PSSMDB.read(), to read in the specified database. See the Profile.scan() example.

6.26.8 PSSMDB.read() — read a PSSM database from a file

read(pssmdb name, pssmdb format)

This reads in a PSSM database from a file. See the Profile.scan() example.

206 CHAPTER 6. MODELLER COMMAND REFERENCE

6.27 The SequenceDB class: using sequence databases

The SequenceDB class holds a database of sequences. Such a database is similar to a multiple sequence alignment,
but contains less auxiliary information (for example, no sequence may contain gaps). This requires less memory
than a true alignment, and is thus more suited for large databases of sequences. Such a database can be scanned for
matches to an input sequence with SequenceDB.search(), used to build sequence profiles with Profile.build()
or filtered by given criteria with SequenceDB.filter().

6.27.1 SequenceDB() — create a new sequence database

SequenceDB(env, **vars)

This creates a new, empty, sequence database. If you give any arguments to this constructor, they are passed
to SequenceDB.read(), to read in an initial database. See the SequenceDB.filter() example.

6.27.2 SequenceDB.read() — read a database of sequences

read(chains list, seq database file, seq database format, clean sequences=True,

minmax db seq len=(0, 999999))

This command will read a database of sequences, either in the PIR, FASTA, or BINARY format.

If the format is PIR or FASTA:

• It is possible to clean all sequences of non-standard residue types by setting clean sequences to True.

• Sequences shorter than minmax db seq len[0] and longer than minmax db seq len[1] are eliminated.

• Only sequences whose codes are listed in the chains list file are read from the seq database file of se-
quences. If chains list is all, all sequences in the seq database file file are read in, and there is no need
for the chains list file.

For the PIR and FASTA formats, make sure the order of sequences in the chains list and seq database file is
the same for faster access (there can of course be more sequences in the sequence file than there are sequence
codes in the codes file).

Additionally, if the sequences are in ’PIR’ format, then the protein type and resolution fields are stored in
the database format. (see Section B.1 for description of ’PIR’ fields).

The protein type field is encoded in a single letter format. ’S’ for sequence and ’X’ for structures of any kind.
This information is transferred to the profile arrays when using Profile.build(). (See also Profile.read()).

The resolution field is used to pick representatives from the clusters in SequenceDB.filter().

None of the options above apply to the BINARY format, which, in return, is very fast. Binary files are standard
HDF5 files (see Section B.4).

When using PIR or FASTA files, the entire sequence database is stored in memory. Thus, extremely large
databases, such as UniProt, will require your computer to have a large amount of system memory (RAM)
available, to store the database and to provide working space. In cases where the database requires more
than 2 gigabytes of memory, you will also need to use a 64-bit machine, such as Alpha, Itanium, or x86 64
(Opteron/EM64T). On the other hand, when using a binary file, only part of the file is read into memory on
demand. (Functions which utilize sequence databases have a window size parameter, which determines how
much of the file is read in at a time. A larger window size will generally result in faster execution, at the
expense of increased memory use.) Thus, binary files are strongly recommended whenever speed or memory
is a concern.

If you are intending to read in a sequence database simply to write it out again in binary format, you
should consider using the SequenceDB.convert() function instead, as this does not need to keep the
whole database in memory.

Example: See Profile.build() command.

https://www.hdfgroup.org/solutions/hdf5/
https://www.uniprot.org/

6.27. THE SEQUENCEDB CLASS: USING SEQUENCE DATABASES 207

6.27.3 SequenceDB.close() — close an open database

close()

This will close any currently open database, freeing any memory used. (For a binary database, it will also
release the HDF5 file handle.) After calling this function, the database will be empty.

Note that the database is automatically closed when its Python object is destroyed.

6.27.4 SequenceDB.write() — write a database of sequences

write(chains list, seq database file, seq database format, window size=1024)

This command will write a database of sequences currently in memory, either in the PIR, FASTA, or BINARY
format. The chains list file is written only for the PIR or FASTA formats.

BINARY files are standard HDF5 files, and are machine-independent. Note, however, that they are not
compatible with older versions of Modeller.

See SequenceDB.read() for a discussion of the window size parameter.

Example: See Profile.build() command.

6.27.5 SequenceDB.convert() — convert a database to binary format

convert(chains list, seq database file, seq database format, outfile, clean sequences=True,

minmax db seq len=(0, 999999))

This command will read a database of sequences, in PIR or FASTA format, and write it out in BINARY format.
See SequenceDB.read() for an explanation of the parameters used. outfile gives the name of the resulting
binary file.

The conversion process is done one sequence at a time, so this requires substantially less system memory
than SequenceDB.read() followed by SequenceDB.write().

Any existing data in the database is discarded by this routine, and the database is empty when the function
finishes.

Example: examples/commands/convert sequence db.py

from modeller import *

log.verbose()

env = Environ()

sdb = SequenceDB(env)

sdb.convert(seq_database_file=’pdb95.fsa’, seq_database_format=’FASTA’,

chains_list=’ALL’, minmax_db_seq_len=[1, 40000],

clean_sequences=True, outfile=’pdb95.bin’)

6.27.6 SequenceDB.search() — search for similar sequences

search(aln, seq database file, search group list, search randomizations=0, search top list=20,

off diagonal=100, overhang=0, gap penalties 1d=(-900.0, -50.0), signif cutoff=(4.0, 5.0),

rr file=’$(LIB)/as1.sim.mat’, matrix offset=0.0, fast search cutoff=1.0, data file=False,

https://www.hdfgroup.org/solutions/hdf5/
https://salilab.org/modeller/examples/commands/convert_sequence_db.py

208 CHAPTER 6. MODELLER COMMAND REFERENCE

search sort=’LONGER’, output=’LONG’, alignment features=’INDICES CONSERVATION’,

local alignment=False, fast search=False, window size=1024, io=None, **vars)

This command searches a sequence database for proteins that are similar to a given target sequence.

The target sequence should be the only sequence in the provided alignment, aln.

The database of sequences to be scanned against must be read previously by the SequenceDB.read()
command.

The command uses the dynamic programming method for the best sequence alignment, given the gap
creation and extension penalties specified by gap penalties 1d and residue type scores read from file rr file.
gap penalties 1d[0] is a gap creation penalty and gap penalties 1d[1] is a gap extension penalty.

The search top list top hits are written to the log file at the end. The hits are sorted according to the
fractional sequence identity score obtained by dividing the number of identical residue pairs by the length of
the longer sequence (search sort = ’LONGER’) or the shorter sequence (search sort = ’SHORTER’).

The final list of hits contains three different significance values:

1. SIGNI. Z-score from sequence randomizations. This is the most accurate significance score, but the
slowest one to calculate. For each pairwise comparison, the two sequences are shuffled a specified
number of times (search randomizations) to obtain the mean and standard deviation of “random” scores
from which the Z-score for an alignment score of a given pair of sequences is calculated.

2. SIGNI2. Z-score for sequence identity from the database scan. After comparison of the target sequence
with all sequences in the database is done, the comparisons are sorted by the length of the database
sequence. The pairwise sequence identities of the 20 sequences closest in length to the target sequence are
used to calculate the average and standard deviation of the percentage sequence identities for subsequent
calculation of the Z-score for the percentage sequence identity of a given pairwise alignment.

3. SIGNI3. Z-score for alignment score from the database scan. The procedure is the same as for SIGNI2,
except that the alignment scores are used instead of the pairwise sequence identities.

The calculation of the Z-scores assumes that the random scores are distributed according to the Gaussian
distribution, instead of the extreme value distribution [Karlin & Altschul, 1990], which is more correct.

search randomizations specifies how many alignments of the shuffled sequences are done to calculate the
significance score for the overall sequence similarity. If 0, the significance is not calculated. If more than 5
randomizations are done, the significance score, not sequence identity, is used for sorting the hit list.

When fast search is True only those sequences that have a database-scan alignment score significance (SIGNI3
in output) above fast search cutoff are used for the “full” randomization-based significance calculation. Since
the mean and the standard deviation of the distribution obtained by randomizing the two compared sequences
are much more appropriate than the corresponding quantities for the target/database comparisons, fast search
should be True only when you are in a hurry and the database is large.

If data file is True the final results (list of PDB codes with significances, etc.) are also written to a separate
file ’seqsearch.dat’.

If output is ’LONG’, the best alignment for each sequence in the database and its various scores are also
written to the log file. If output is ’VERY LONG’, individual scores obtained for randomized sequences are
also written to the log file (this is almost never needed).

If the selected significance score is larger than signif cutoff[0] and not more than signif cutoff[1] units worse
than the best hit, all the members of the same group, as defined in search group list, are added to the
alignment (the original query sequence is removed). These sequences are taken from seq database file, which
is often (but not always) the same file previously provided to SequenceDB.read(), and must be in PIR
format. Subsequent Alignment.malign(), Environ.dendrogram() and Alignment.write() can then be
used to write out all related PDB chains aligned to the target sequence.

See SequenceDB.read() for a discussion of the window size parameter.

Example: examples/commands/sequence search.py

https://salilab.org/modeller/examples/commands/sequence_search.py

6.27. THE SEQUENCEDB CLASS: USING SEQUENCE DATABASES 209

Example for: SequenceDB.search()

This will search the MODELLER database of representative protein chains

for chains similar to the specified sequence.

from modeller import *

log.verbose()

env = Environ()

Read in the sequences of all PDB structures

try:

sdb = SequenceDB(env, seq_database_file=’pdball.pir’,

seq_database_format=’PIR’,

chains_list=’very-short-for-test.cod’)

except IOError:

print("""

Could not read sequence database file. This file is not included by default

in the Modeller distribution, but you can download it from the Modeller

downloads page (https://salilab.org/modeller/supplemental.html).

Note: it is recommended to use Profile.build() rather than SequenceDB.search().

See step 1 of the Modeller basic tutorial at

https://salilab.org/modeller/tutorial/basic.html

""")

raise

Read in the query sequence in alignment format

aln = Alignment(env, file=’toxin.ali’, align_codes=’2nbt’)

sdb.search(aln, search_randomizations=20, # should use 100 in real life

seq_database_file=’pdball.pir’,

search_group_list=’pdb_95.grp’,

off_diagonal=9999, gap_penalties_1d=(-800, -400),

signif_cutoff=(1.5, 5.0))

aln.malign()

aln.write(file=’toxin-search.pap’, alignment_format=’PAP’)

6.27.7 SequenceDB.filter() — cluster sequences by sequence-identity

filter(seqid cut, output grp file, output cod file, gap penalties 1d=(-900.0, -50.0),

matrix offset=0.0, rr file=’$(LIB)/as1.sim.mat’, max diff res=30, window size=512)

This command clusters a set of sequences by sequence identity. The command uses a greedy algorithm: the
first sequence in the file becomes the first group representative. All other sequences are compared with this
and if they are similar enough, as specified in seqid cut, they are added as members of this group. These
sequences are not used for further comparisons. The next non-member sequence becomes the next group
representative and so on.

The initial set of sequences must be read previously by the SequenceDB.read() command with
seq database format being either ’PIR’ or ’FASTA’.

210 CHAPTER 6. MODELLER COMMAND REFERENCE

rr file is the residue-residue substitution matrix and matrix offset its offset. The command only handles
similarity matrices for efficiency purposes.

The command uses the Smith-Waterman dynamic programming method (as in Alignment.align()) for the
best sequence alignment, given the gap creation and extension penalties specified by gap penalties 1d and
residue type scores read from file rr file. gap penalties 1d[0] is a gap creation penalty and gap penalties 1d[1]
is a gap extension penalty.

The final list of groups and their members is written out to output grp file. The codes of the representative
sequences is written out to output cod file.

The clustering algorithm evaluates the following conditions in hierarchical order before adding a sequence to
a group:

1. The difference in length: If the difference in the number of residues between the group representative
and the sequence being compared is greater than max diff res, the sequence will not be included into
that group.

2. The number of unaligned residues: After the local alignment is performed, a sequence will not be
considered for addition into a group unless the difference between the smaller of the two sequences and
the number of aligned positions in the alignment is less than max unaligned res.

3. Sequence Identity: Finally, if the sequence identity calculated from the alignment is greater than se-

qid cut, the sequence is added to a group.

If the initial set of sequences read were in ’PIR’ format with values in the resolution field, then the group
representative is the sequence with the highest resolution. This is especially useful when clustering sequences
from the PDB.

See SequenceDB.read() for a discussion of the window size parameter. Note that this function acts on two
regions of the database simultaneously (it does an all-against-all comparison) and so the default window size
is half that of other functions.

Example: examples/commands/seqfilter.py

from modeller import *

log.verbose()

env = Environ()

sdb = SequenceDB(env, seq_database_file=’sequences.pir’,

seq_database_format=’PIR’,

chains_list=’ALL’, minmax_db_seq_len=[30, 3000],

clean_sequences=True)

sdb.filter(rr_file=’${LIB}/id.sim.mat’, gap_penalties_1d=[-3000, -1000],

max_diff_res=30, seqid_cut=95, output_grp_file=’seqfilt.grp’,

output_cod_file=’seqfilt.cod’)

https://salilab.org/modeller/examples/commands/seqfilter.py

6.28. THE DENSITY CLASS: HANDLING ELECTRON MICROSCOPY DENSITY DATA 211

6.28 The Density class: handling electron microscopy density data

The Density class stores all information from an electron microscopy density map file. Protein models can then
be docked to this density (using Density.grid search()) to improve their quality.

6.28.1 Density() — create a new density map

Density(env, **vars)

This creates a new, empty, density map. If you give any arguments to the Density() constructor, they are
passed to Density.read(), to read in an initial density. See the Density.grid search() example.

6.28.2 Density.resolution — Map resolution

The resolution, as set by Density.read(). Can be overridden after reading the map.

6.28.3 Density.sigma factor — Sigma factor

The sigma factor determines the width of the Gaussian distribution used to represent each atom in the
model. The default value of 1/(2 ∗

√

(2log2)) (0.4246609) results in the width of the Gaussian at half the
maximum height being equal to Density.resolution.

6.28.4 Density.voxel size — Map voxel size

The map voxel size, as set by Density.read().

6.28.5 Density.px — Origin of the map

The x coordinate of the origin of the map (in angstroms), as set by Density.read().

6.28.6 Density.py — Origin of the map

The y coordinate of the origin of the map (in angstroms), as set by Density.read().

6.28.7 Density.pz — Origin of the map

The z coordinate of the origin of the map (in angstroms), as set by Density.read().

6.28.8 Density.grid — Density values

The actual density values, as a 3D array. This is similar to a numpy array in that it is accessed with a 3-tuple
(e.g., d.grid[1,0,3]) and has a shape member that gives the dimensions of the grid (again as a 3-tuple).
The order of the dimensions is z, y, x.

6.28.9 Density.read() — read an EM (electron microscopy) density map file

read(file, resolution, em map size=0, voxel size=0.0, em density format=’XPLOR’,

filter type=’NONE’, filter values=(0.0, 0.0), density type=’SPHERE’, px=None, py=None, pz=None,

cc func type=’CCF’)

212 CHAPTER 6. MODELLER COMMAND REFERENCE

This command reads a density map from file, which should be provided as a grid of intensities, in the
X-PLOR [Brünger, 1992], CCP4, or MRC format. (Note that CCP4 and MRC files are currently read in
the same way, since the formats are very similar.) file can be a filename or a readable file handle (see
modfile.File()).

Note that while non-cubic grids can be read in, Density.grid search() only works with cubic grids.

The size of the grid and the map voxel size (voxel size) are both taken from the density map file itself. If,
however, em map size is specified and is non-zero, the grid must be cubic and all dimensions must match
this value. If voxel size is specified and differs from that given in the file header, the user-specified value is
used in preference.

The density map resolution is given by resolution.

px, py, and pz specify the origin of the map, in angstroms. If not given, it is read from the MRC or CCP4
map header (X-PLOR files do not include this information, so the origin will default to zero in this case.)

When fitting the probe into the EM grid, the probe structure is converted first into probe density, by using
the function indicated in the density type variable. Each atom can be represented by one of several atomic
density functions, including, the uniform sphere model (’SPHERE’), the Gaussian function (’GAUSS’), a
normalized Gaussian function (’NORM’), a hybrid Gaussian/sphere model (’HYBRID’), and an interpolation
to the closest point on the grid (’TRACE’). The recommended function is ’SPHERE’.

filter type is used to filter the values of the EM density during this calculation. Filters that can be used are:
’THRESHOLD’ for a lower threshold (any density value below the first value set in filter values will be set to
0); ’SQUARE’ for a square filter; and ’LAPLACIAN’ for a Laplacian filter. ’NONE’ is the default option, and
means that no filter is used.

When calculating the cross-correlation coefficient between a probe model and the density map, ccf func type

specifies if you want the normalized cross-correlation coefficient (’CCF’), or the local cross-correlation coef-
ficient (’LCCF’).

Example: See Density.grid search() command.

6.28.10 Density.grid search() — dock a structure into an EM (electron microscopy)
density map

grid search(em pdb name, chains num, em density format=’XPLOR’, num structures=1,

dock order=’INPUT’, start type=’CENTER’, translate type=’NONE’, number of steps=1,

angular step size=0, temperature=293.0, best docked models=1, em fit output file=’em fit.out’)

Requirements: PDB files

This command docks a structure of a protein/domain (probe) into a given cubic EM density map. See
original paper for the description of the method and the most recommended protocols [Topf et al., 2005].

Note that this only works with cubic density maps.

The probe is specified by the variable em pdb name. Before starting the protocol, the probe is positioned on
the EM density grid based on the start type variable:

• ’CENTER’ will translate the center of mass of the probe to the center of the grid.

• ’ENTIRE’ will divide the grid into cells similar in volume to the probe, and will translate the probe to
the center of each of these cells consecutively.

• ’SPECIFIC’ will use the coordinates specified by the user (the input PDB coordinates) as a starting
position.

The best fit between the probe and the EM density map is obtained by changing the position of the model
so as to maximize the cross-correlation between the probe density and the EM density. See Density.read()
for the density fitting procedure, controlled by the density type variable.

6.28. THE DENSITY CLASS: HANDLING ELECTRON MICROSCOPY DENSITY DATA 213

The optimization of the cross-correlation score is performed by a 6D search of the probe on the EM grid,
based on the variable translate type. If ’NONE’ is specified, only a rotational search over the three rotational
Euler angles (φ, θ, ψ) is performed, with no translations. angular step size gives the maximal step size of
searching for all combinations of Euler angles, which is recommended to be 30 degrees. The best fit from
this coarse search is refined by a finer local search in all three Euler angles. For a protein of 150 residues
this calculation typically takes less than 0.5 minutes on a 3.0 GHz Intel Xeon processor.

If translate type is ’RANDOM’, a Monte Carlo (MC) optimization is performed, and the number of MC steps
has to be specified (by number of steps). A single MC step consists of (i) a random translation of the probe
for one voxel on the EM grid, (ii) a search for the three Euler angles that maximize cross-correlation score,
and (iii) an application of the Metropolis criterion [Metropolis et al., 1953]. The temperature used for the
Metropolis criterion is specified in temperature (typically about 5000 units). This calculation typically takes
about 1-2 minutes.

When translate type is ’EXHAUSTIVE’, a local search is performed with the probe on the grid. The optimal
orientations at its original position and all 26 (i.e., 3x3x3 - 1) neighboring grid points are obtained successively
by enumerating all three Euler angles. A Monte Carlo criterion is applied to each one of these 27 optimal
orientations (usually with temperature lower than 5000, but this number has to be adjusted according to
the optimization). number of steps gives the number of steps for which this process is repeated (typically
25 times). When the EM density map covers only the probe model and start type is either ’CENTER’ or
’SPECIFIC’, this protocol can be used for a translational and rotational refinement of the initial placement
of the model on the grid. When start type is ’ENTIRE’ this protocol will be applied for a local search only
in those cells where the randomly oriented probe gives a positive cross-correlation score. The calculation
typically takes about 10-15 minutes.

best docked models specifies how many best-fitted models should be saved by the program. This becomes
more important at decreasing resolutions, as the best solution will not necessarily have the highest cross-
correlation score.

em fit output file names an output file which will be used to record the progress of the optimization.

Output: targ 1 1.pdb The fitted coordinates file. The name is formed by taking the first 4 letters from your
input PDB file and adding ’ 1 1.pdb’. If best docked models = 2, you will get also targ 1 2.pdb, and
so on. If you use the option start type=ENTIRE, it will add targ 2 1.pdb, targ 2 2.pdb and so on.

bestCC targ The results file which reports the CCF, with the number of required solutions (as indicated
in best docked models).

targ best.MRC The fitted structure converted to a map.

targ init 1.pdb The initial structure superposed in the center of mass (if start type=CENTER), or in a specific
location (if start type=SPECIFIC).

targ init.MRC The initial structure converted to a map.

EM map.MRC This is your original density map. It’s a test to see if Modeller is reading it correctly.

Example: examples/commands/em grid search.py

from modeller import *

log.verbose()

env = Environ()

den = Density(env, file=’1cuk-a2.mrc’, em_density_format=’MRC’,

voxel_size=1., resolution=8., em_map_size=40,

cc_func_type=’CCF’, density_type=’SPHERE’)

den.grid_search(em_density_format=’MRC’, num_structures=1,

em_pdb_name=[’1cuk-a2.pdb’], chains_num=[1],

start_type=’CENTER’, number_of_steps=1, angular_step_size=30.,

temperature=0., best_docked_models=1,

em_fit_output_file=’test-cr.log’)

https://salilab.org/modeller/examples/commands/em_grid_search.py

214 CHAPTER 6. MODELLER COMMAND REFERENCE

6.29. THE SAXSDATA CLASS: USING SMALL-ANGLE X-RAY (SAXS) DATA 215

6.29 The SAXSData class: using small-angle X-ray (SAXS) data

The SAXSData class is used to store small-angle X-ray (SAXS) data.

6.29.1 SAXSData() — create a new SAXSData structure

SAXSData(env, **vars)

This creates a new SAXSData object. Use SAXSData.ini saxs() to initialize it.

6.29.2 SAXSData.ini saxs() — Initialization of SAXS data

ini saxs(atmsel, filename=’$(LIB)/formfactors-int tab solvation.lib’, s min=0.0, s max=2.0,

maxs=100, nmesh=100, natomtyp=15, represtyp=’heav’, wswitch=’uniform’, s hybrid=0.0, s low=0.0,

s hi=2.0, spaceflag=’real’, rho solv=0.334, use lookup=True, nr=5000, dr=0.1, nr exp=300,

dr exp=1.0, use offset=False, use rolloff=False, use conv=False, mixflag=False, pr smooth=False)

Routine to initialize the SAXSData structure. Here the sampling in reciprocal space needs to be specified;
currently only equidistant sampling is possible. Moreover, the parameters for the scoring function and for
its computation are set.

s min and s max specify the minimum and maximum frequency in reciprocal space, in Å−1. maxs gives the
maximum number of frequencies, and nmesh the actual number (which must be less than maxs).

natomtyp gives the number of “atoms”, i.e. scattering centers. represtyp specifies the representation : ’heav’,
’allh’, or ’CA’. filename is the name of the library for formfactors. wswitch is the character for filter of scoring
function: ’unity’, ’sq’, or ’hybrid’. If ’hybrid’, then s hybrid is the frequency above which s2 weighting is
applied. s low and s hi give the lower and upper cutoff for the bandpass filter in Å−1. spaceflag specifies how
I(s) should be computed. ’real’ space via P (r) or ’reciprocal’. ’real’ is more than a magnitude faster but
less accurate for high resolution (s > 0.5).

rho solv gives the electron density of solvent, in e−Å−3. (The default 0.334 corresponds to H2O.) use lookup,
if True, uses lookup tables for SINC and COS functions, giving a significant increase in speed for ’reciprocal’
mode.

nr gives the number of points for P (r) sampling, and dr the spacing of these points in Å. nr exp gives the
number of points for Pexp(r) sampling, and dr exp their spacing.

If use offset is True then allowance is made for an additive constant in the experimental spectrum. If
use rolloff is True, allowance is made for Gaussian rolloff in the model spectrum. If use conv is True, the
spectrum is multiplied with the formfactor of nitrogen (3Å) spectrum. If mixflag is True then more than
one conformation is modeled simultaneously. If pr smooth is True smoothing of p(r) is done.

6.29.3 SAXSData.saxs read() — Read in SAXS data

saxs read(filename)

Read in SAXS data. Make sure that sampling of s is the same as specified in SAXSData.ini saxs(). The
file is text format, containing 3 columns: spatial frequency s in Å−1, Intensity, and experimental error (if
determined). Comments start with ’#’.

6.29.4 SAXSData.saxs pr read() — Read in P(r) data

saxs pr read(filename)

216 CHAPTER 6. MODELLER COMMAND REFERENCE

Read in P(r) data. The file is text format, containing 3 columns: radius s in Å, P (r), and experimental error
(if determined). Comments start with ’#’.

See also Model.saxs pr().

6.30. THE INFO OBJECT: OBTAINING INFORMATION ABOUT THE MODELLER BUILD 217

6.30 The info object: obtaining information about the Modeller

build

The info object holds information about the current Modeller build (most of this can also be found in the first
few lines of the log file). This information is useful when reporting bugs, or for writing scripts which require a
certain Modeller version.

6.30.1 info.version — the full Modeller version number

This is the current version, as a string. This contains all the information returned by info.version info and
info.build date, but in a less easily machine-readable form.

6.30.2 info.version info — the version number, as a tuple

This is only the version number, as a Python tuple containing the major and minor version numbers. For
example, version 8v0 would return (8, 0). (SVN builds always return ’SVN’ instead.)

6.30.3 info.build date — the date this binary was built

This is the date on which this Modeller binary was built, as a string in ’YYYY/MM/DD HH:MM:SS’
format.

6.30.4 info.exe type — the executable type of this binary

This is a string identifying the machine and Fortran compiler type of this Modeller binary.

6.30.5 info.debug — this binary’s debug flag

This is True if this binary was built with compiler debugging flags, or False if full code optimization was
turned on. Debugging builds generally run slower than optimized builds, so release binaries will invariably
return False.

6.30.6 info.bindir — Modeller binary directory

This is the directory in which Modeller binaries are installed.

6.30.7 info.time mark() — print current date, time, and CPU time

time mark()

This prints to the log file the total CPU time used in this run (in seconds) and the CPU time used since the
last time this command was called. The date and time on which the run was started, plus the current date
and time, are also printed, in ’YYYY/MM/DD HH:MM:SS’ format.

6.30.8 info.jobname — name of the current job

This is the name of the current Modeller job, used to name log files. Usually, it is the name of the script,
without any file extension, or ’(stdin)’ if input is being piped into the program.

https://www.python.org/

218 CHAPTER 6. MODELLER COMMAND REFERENCE

6.31 The log object: controlling the amount of output

The log object allows you to control the amount of information output to the Modeller log file. (It is also used
internally to divert the system standard output, e.g. from the Python ’print’ statement, to the log file.)

6.31.1 log.level() — Set all log output levels

level(output=1, notes=0, warnings=0, errors=1, memory=0)

This sets all five of Modeller’s log outputs. (This is very similar in operation to the old OUT-

PUT CONTROL variable.) Each argument should be an integer, either 0 to display no output, or 1 to
display all output. An exception is the memory argument, which can also be set to 2 to display additional
dynamic memory information.

6.31.2 log.none() — display no log output

none()

This instructs Modeller to display no log output.

6.31.3 log.minimal() — display minimal log output

minimal()

This instructs Modeller to only display important outputs, and errors.

6.31.4 log.verbose() — display verbose log output

verbose()

This instructs Modeller to display all log output.

6.31.5 log.very verbose() — display verbose log output, and dynamic memory in-
formation

very verbose()

This instructs Modeller to display all log output. Additionally, a breakdown of all dynamic memory used
by Modeller is displayed every time memory is allocated or freed. (Note that some information is held
statically, and this is not tracked. Some routines require additional temporary storage, which is also not
listed here. Finally, memory used by any Python variables is not accounted for.)

https://www.python.org/
https://www.python.org/

6.32. THE MODFILE MODULE: HANDLING OF FILES 219

6.32 The modfile module: handling of files

The modfile module contains routines for dealing with files which are used by Modeller. More complete facilities
for most of these functions are available within the standard ’os’ Python module; however, the modfile module
is provided for compatibility with old Top scripts, and for systems with incomplete Python installations.

6.32.1 modfile.default() — generate an ‘automatic’ filename

default(root name=’undf’, file id=’X’, id1=1, id2=1, file ext=’’)

This returns a generated file name, as (root name)(file id)(id1)(id2)(file ext), where id1 and id2 are
printed as 4-digit numbers, padded with zeroes if necessary. For example, ’2ptn.B99990001.pdb’ results
from root name = ’2ptn’, file id = ’.B’, id1 = 9999, id2 = 1, and file ext = ’.pdb’. This mimics the
‘automatic’ filename generation of previous versions of Modeller when filenames were set to ’default’ or
’${DEFAULT}’.

6.32.2 modfile.delete() — delete a file

delete(file)

This command deletes the named file.

6.32.3 modfile.inquire() — check if file exists

inquire(file)

Output: file exists

This command returns 1 if the specified file exists, or 0 otherwise.

6.32.4 modfile.File() — open a handle to a Modeller file

File(filename, mode=’r’)

This opens a file and returns a handle object, which can be used for methods that need an open file, such as
Alignment.read one(). Many methods (such as Model.write()) can also be given a writeable file handle,
to have them append their output to that file rather than creating a new one. (They can also be given a
Python filelike object, such as sys.stdout or io.StringIO, to write to a Python file; however, this is less
efficient as it must call Python functions to do the IO.) Similarly, many methods (such as Model.read()
can be given a readable file handle, or a Python filelike object.

The file is closed automatically when the handle object is deleted, or explicitly by calling its close method.

The mode argument functions similarly to that used by C or Python; i.e., the following modes are acceptable:
’r’, ’w’, ’rb’ and ’wb’, to open a file for reading in text mode, writing in text mode, reading in binary
mode, or writing in binary mode, respectively. Note that while only Windows operating systems make a
distinction between text and binary mode, Modeller will do some additional checks on text format files
to catch common mistakes (e.g., trying to read a Unicode rather than plain text file) so you should use the
’b’ suffix on all platforms if you are using binary files.

Example: See Alignment.read one() command.

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/

220 CHAPTER 6. MODELLER COMMAND REFERENCE

6.33 The scripts module: utility scripts

The scripts module contains utility scripts for some common tasks.

6.33.1 cispeptide() — creates cis-peptide stereochemical restraints

cispeptide(rsr, atom ids1, atom ids2)

This generates restraints to constrain the given residue pair to cis-peptide conformation. Any existing trans
restraints are first removed.

Example: See Restraints.add() command.

6.33.2 complete pdb() — read a PDB, mmCIF, or BinaryCIF file, and fill in any
missing atoms

complete pdb(env, filename, special patches=None, transfer res num=False, model segment=None,

patch default=True)

Output: mdl

This reads in a PDB, mmCIF, or BinaryCIF file specified by filename, and fills in any missing atoms using
internal coordinates. If you want to read in a PDB, mmCIF, or BinaryCIF file from PDB or generated from
an experiment or some other program, you should use this routine in preference to Model.read(), which
does not handle missing atoms.

If special patches is not None, it should be a Python function which takes a single argument (the model).
It is called prior to filling in missing coordinates. This can be used to adjust the topology, e.g. by adding
disulfide bridges. If you wish to patch terminal residues, you should also set patch default to False to turn
off the default patching.

If transfer res num is True, the residue numbering from the original PDB/mmCIF/BinaryCIF is retained (by
default, residues are renumbered from 1, and chains are labeled from A).

If model segment is set, it is used to read a subset of the residues from the file, just as in Model.read().

In order for this routine to work correctly, you should first have read in topology and parameter libraries.
The new Model object is returned on success.

Example: See Selection.energy(), ConjugateGradients() command.

6.34 The salign module: high-level usage of SALIGN

The salign module contains high-level methods to simplify the usage of SALIGN (see Alignment.salign()) for
some common tasks.

6.34.1 iterative structural align() — obtain the best structural alignment

iterative structural align(aln, align block=0)

Given an initial alignment of two or more structures, this will run Alignment.salign() in an iterative
fashion, exploring a range of suitable parameter values, to determine the best structural alignment, as
detailed in [Madhusudhan et al., 2009].

https://www.python.org/

6.35. PARALLEL JOB SUPPORT 221

Example: examples/salign/salign iterative.py

Illustrates the SALIGN iterative multiple structure alignment

from modeller import *

import modeller.salign

log.none()

env = Environ()

env.io.atom_files_directory = [’.’, ’../atom_files’]

aln = Alignment(env)

for (code, chain) in ((’1is4’, ’A’), (’1uld’, ’D’), (’1ulf’, ’B’),

(’1ulg’, ’B’), (’1is5’, ’A’)):

mdl = Model(env, file=code, model_segment=(’FIRST:’+chain, ’LAST:’+chain))

aln.append_model(mdl, atom_files=code, align_codes=code+chain)

modeller.salign.iterative_structural_align(aln)

aln.write(file=’1is3A-it.pap’, alignment_format=’PAP’)

aln.write(file=’1is3A-it.ali’, alignment_format=’PIR’)

6.35 Parallel job support

The parallel module provides methods to parallelize Modeller calculations over multiple processors. This may
be employed to make use of more than one CPU on a multi-processor machine, or of several nodes in a cluster.
Each remote process is termed a ‘worker’, while the process which starts and controls the parallel job is termed the
‘manager’.

Two methods for accessing the workers from the manager are provided; the first is a task-based interface
(Job.queue task(), Job.run all tasks() and Job.yield tasks unordered()) which is largely transparent in
use and fault-tolerant, while the second is a lower-level worker-manager message-passing interface (Job.start(),
Communicator.send data(), Communicator.get data() and Worker.run cmd()), which is similar to MPI
(although coarse-grained) and requires you to handle errors yourself. It is recommended that you use the task
interface unless you require a large amount of message passing.

This module relies on several modules in the Python standard library. These modules are not provided with
Modeller, so you must additionally install Python if it is not already present on your system. It is also experi-
mental, and may need modification to work with your own networking or parallel system.

6.35.1 Job() — create a new parallel job

Job(seq=(), modeller path=None, host=None)

This creates a new Job object, used to keep track of multiple worker processes. It is initially empty, but
acts just like an ordinary Python list, so you can add or remove Worker objects (see below) using ordinary
list operations (e.g., append, del). Also, if you provide a list of suitable worker objects to Job(), they will
automatically be added.

Each worker runs a Modeller process. The system attempts to start this process in the same way as the
Modeller script used for the manager. If the manager is run using your machine’s system Python, the
worker is started by running ’python modlib/modeller/parallel/modworker.py’, while if the manager
was started using the ’mod10.8’ script, the worker will be too. In some cases, it may get this command line
wrong, in which case you can specify the command explicitly using the modeller path variable. For example,

https://salilab.org/modeller/examples/salign/salign_iterative.py
https://www.python.org/
https://www.python.org/
https://www.python.org/

222 CHAPTER 6. MODELLER COMMAND REFERENCE

set it to ’mod10.8’ to force it to use the version of Python built in to Modeller rather than the system
Python.

Each worker, when started, tries to connect back over the network to the manager node. By default, they try
to use the fully qualified domain name of the machine on which you create the Job object (the manager). If
this name is incorrect (e.g., on multi-homed hosts) then specify the true hostname with the host parameter.
You can also set host to ’localhost’ if your machine does not have network connectivity and/or you are
running only local workers.

Each worker will run in the same directory as the manager, so will probably fail if you do not have a shared
filesystem on all nodes. The output from each worker is written to a logfile called ’${JOB}.workerN’ where
’${JOB}’ is info.jobname and ’N’ is the number of the worker, starting from zero.

Job.worker startup commands is a Python list, initially empty, of Python commands that will be run on each
worker when it is started up. You can add your own worker initialization by adding to this list.

Once you have created the job, to use the task interface, submit one or more tasks with Job.queue task(),
and then run the tasks with Job.run all tasks() or Job.yield tasks unordered().

To use the message-passing interface, first start all workers with Job.start(), and then use
Communicator.send data(), Communicator.get data() and Worker.run cmd() to pass messages
and commands.

Example: See Job.start(), Job.run all tasks() command.

6.35.2 SGEPEJob() — create a job using all Sun GridEngine (SGE) worker pro-
cesses

SGEPEJob(seq=(), modeller path=None, host=None)

This functions identically to Job(), above, but automatically adds workers for every node in a Sun Gri-
dEngine (SGE) job using an SGE parallel environment. This is done by parsing the PE hostfile, which SGE
should pass in the ’PE HOSTFILE’ environment variable, and creating an SGEPEWorker object (see below)
for each processor. Other workers can still be added to the job if desired.

This class should be used to create a job from a Modeller script running on the manager (first) node in
an SGE parallel environment job.

6.35.3 SGEQsubJob() — create a job which can be expanded with Sun GridEngine
’qsub’

SGEQsubJob(options, maxworker, seq=(), modeller path=None, host=None)

This functions identically to Job(), above, but it automatically grows by adding new SGEQsubWorker workers
(up to a maximum of maxworker) if you submit more tasks to the job than there are available workers. (These
are grouped into a single SGE array job.) options specifies options for the new SGEQsubWorker objects. New
workers are not automatically added when using the message-passing interface; you should manually add
new SGEQsubWorker objects in this case.

This class should be used to create a job from a Modeller script running on your SGE batch system head
node (or other node which can run ’qsub’ and has a shared filesystem with the worker nodes).

6.35.4 Job.worker startup commands — Worker startup commands

This is a Python list, initially empty, of Python commands that will be run on each worker when it is started
up. You can add your own worker initialization by adding to this list.

6.35. PARALLEL JOB SUPPORT 223

6.35.5 Job.queue task() — submit a task to run within the job

queue task(taskobj)

This adds the given Task object to the job’s queue. All tasks in the queue can later be run with
Job.run all tasks() or Job.yield tasks unordered().

The task should be a instance of a class derived from Task, which provides a ’run’ method. This method
will be run on the worker node; any arguments to this method are given on the manager when the object
is created, and are automatically passed for you to the worker. Anything you return from this method is
automatically passed back to the manager. (Note that Communicator.send data() is used to send this
data, which cannot send all internal Modeller types.)

Note that generally you need to declare tasks in a separate Python module, and load them in with the
import statement, as the tasks are passed using Python’s pickle module, which will otherwise give an error
such as ’AttributeError: ’module’ object has no attribute ’mytask’’.

Example: See Job.run all tasks() command.

6.35.6 Job.run all tasks() — run all queued tasks, and return results

run all tasks()

This runs all of the tasks in the job’s queue on any available worker. When all of the tasks have finished, this
functions returns a list of all the return values from the tasks, in the same order that they were submitted.

Tasks are run in a simple round-robin fashion on the available workers. If a worker fails while running a task,
that task is automatically resubmitted to another worker. If you submit more tasks than available workers,
new workers are automatically added to the job if the job supports this functionality (e.g., SGEQsubJob()).

See also Job.yield tasks unordered().

Example: examples/python/mytask.py

from modeller import *

from modeller.parallel import Task

class MyTask(Task):

"""A task to read in a PDB file on the worker, and return the resolution"""

def run(self, code):

env = Environ()

env.io.atom_files_directory = ["../atom_files"]

mdl = Model(env, file=code)

return mdl.resolution

Example: examples/python/parallel-task.py

from modeller import *

from modeller.parallel import Job, LocalWorker

Load in my task from mytask.py (note: needs to be in a separate Python

module like this, in order for Python’s pickle module to work correctly)

from mytask import MyTask

log.minimal()

Create an empty parallel job, and then add 2 worker processes running

https://www.python.org/
https://www.python.org/
https://salilab.org/modeller/examples/python/mytask.py
https://salilab.org/modeller/examples/python/parallel-task.py

224 CHAPTER 6. MODELLER COMMAND REFERENCE

on the local machine

j = Job()

j.append(LocalWorker())

j.append(LocalWorker())

Run ’mytask’ tasks

j.queue_task(MyTask(’1fdn’))

j.queue_task(MyTask(’1b3q’))

j.queue_task(MyTask(’1blu’))

results = j.run_all_tasks()

print("Got model resolution: " + str(results))

6.35.7 Job.yield tasks unordered() — run all queued tasks, and yield unordered
results

yield tasks unordered()

This runs all of the tasks in the job’s queue on any available worker, like Job.run all tasks(). However,
it does not wait until all the tasks have completed; it will return results from tasks as they complete, as a
Python generator. Note that this means the results will not generally be in the same order as the tasks were
submitted.

See also Job.run all tasks().

6.35.8 Job.start() — start all workers for message-passing

start()

This starts all non-running workers in the job, such that they can later be used for message passing. (There
is no need to call this command if using the task interface, as the workers are automatically started when
required.)

Example: examples/python/parallel-msg.py

from modeller import *

from modeller.parallel import Job, LocalWorker

Create an empty parallel job, and then add a single worker process running

on the local machine

j = Job()

j.append(LocalWorker())

Start all worker processes (note: this will only work if ’modxxx’ - where

xxx is the Modeller version - is in the PATH; if not, use modeller_path

to specify an alternate location)

j.start()

Have each worker read in a PDB file (provided by us, the master) and

return the PDB resolution back to us

for worker in j:

https://salilab.org/modeller/examples/python/parallel-msg.py

6.35. PARALLEL JOB SUPPORT 225

worker.run_cmd(’’’

env = Environ()

env.io.atom_files_directory = ["../atom_files"]

log.verbose()

code = master.get_data()

mdl = Model(env, file=code)

master.send_data(mdl.resolution)

’’’)

worker.send_data(’1fdn’)

data = worker.get_data()

print("%s returned model resolution: %f" % (str(worker), data))

6.35.9 Communicator.send data() — send data

send data(data)

This sends the given data to the communicator. For sending from the manager to workers, this communicator
is simply the ’worker’ object itself. For sending from the workers back to the manager, a communicator called
’manager’ is provided for you.

Any data that can be processed by the Python ’pickle’ module can be sent to and from workers. This includes
most Python objects, simple data such as integer and floating point numbers, strings, and many Modeller

objects. Note, however, that internal Modeller data is not passed in these objects, so if, for example, you
were to pass a Model object, it would contain no atoms when it reached the worker. For complex data such
as this, write it to a file at one end and read it back at the other.

It is an error for the manager to send data to a worker using this function, unless the worker is already
waiting for data (i.e., by itself calling Communicator.get data()). Generally this means you should call
Worker.run cmd() before Communicator.send data().

If there is a problem with the network, this function will raise a NetworkError exception. You can trap this
to rerun the calculation on a different worker, for example. Any other errors (e.g., a syntax error in your
script) will raise a RemoteError exception.

6.35.10 Communicator.get data() — get data

get data(allow heartbeat=False)

This gets the next piece of data available from the worker or manager. It must be matched by a corre-
sponding Communicator.send data() call at the other end, or an error will result. Errors are as for
Communicator.send data().

6.35.11 Worker.run cmd() — run a command on the worker

run cmd(cmd)

This runs a command (or several commands, separated by line breaks) on the worker. (It is not possible for
the worker to run commands on the manager.) Errors are as for Communicator.send data().

https://www.python.org/
https://www.python.org/

226 CHAPTER 6. MODELLER COMMAND REFERENCE

6.35.12 LocalWorker() — create a worker running on the local machine

LocalWorker()

This creates a new worker process, which will run on the same machine as the manager. This is useful if the
machine has multiple CPUs, or if the manager process is going to be largely idle. It should be added to a
Job object to be useful.

6.35.13 SGEPEWorker() — create a worker running on a Sun GridEngine parallel
environment worker node

SGEPEWorker(nodename)

This creates a new worker process, which runs on the worker node given by nodename as part of a Sun
GridEngine (SGE) parallel job. The process is started using ’qrsh -inherit -V’, so your SGE setup
should be correctly configured to allow this. Generally you would use an SGEPEJob object instead, above, to
automatically create worker processes for all SGE nodes.

6.35.14 SGEQsubWorker() — create a ’qsub’ worker running on a Sun GridEngine
node

SGEQsubWorker(options, array=None)

This submits a single-processor job to a Sun GridEngine system with the ’qsub’ command. Once the job
starts, it connects back to your manager script and acts as a new worker process. Generally you would use
an SGEQsubJob object instead, above, to automatically create worker processes when required.

6.35.15 SSHWorker() — create a worker on a remote host accessed via ssh

SSHWorker(nodename, ssh command=’ssh’)

This creates a new worker process running on a remote host given by nodename, started using ’ssh’. You
can change the command used to start processes from ssh to, for example, ’rsh’, with the ssh command

parameter. For most applications, you would need to set up passwordless rsh or ssh for this to be useful.

Chapter 7

Modeller low-level programming

Modeller provides many classes for alignment, searching, comparative modeling, and model evaluation, which
are suitable for many purposes. However, for some advanced applications you may need to adjust some of the
low-level functionality of the program, or call the Modeller functions from your own programs.

7.1 User-defined features and restraint forms

Modeller provides a variety of pre-defined features and mathematical restraint forms (see Section 5.3.1), but
you can add your own by creating new Python classes. For cases where the conventional features and restraints
approach is not practical, you can also add new energy function terms which act on all atoms in the system. This
can be used to add entirely new kinds of restraint for novel modeling situations.

(Note that Python code is generally substantially slower than compiled C or Fortran. If you find yourself
relying on a large amount of Python extensions to Modeller, you may want to recompile the code with Cython,
or rewrite your code as C extension modules.)

7.1.1 User-defined feature types

To create a new feature type, derive a new class from the base features.Feature. You should then set the numatoms
member to the number of atoms your feature acts on, and also override the following functions: eval, deriv, and
is angle. You can also derive your class from any of the built-in Modeller features (e.g., features.Angle) if
you desire.

The eval function is called from Modeller with a Model object and the indices of the atoms defining the
feature. Your function should return the value of the feature. The deriv function is similar, but is also passed
the current feature value; you should return the derivatives of the feature with respect to x, y and z of each
defining atom. The is angle function should return True if your feature is an angle, in which case Modeller

will automatically deal with periodicity for you, and convert any feature values to degrees for the user. (Your eval
and deriv functions should, however, return angle values in radians.)

Example: examples/python/user feat.py

from modeller import *

from modeller.scripts import complete_pdb

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

log.verbose()

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

227

https://www.python.org/
https://www.python.org/
https://cython.org/
https://salilab.org/modeller/examples/python/user_feat.py

228 CHAPTER 7. MODELLER LOW-LEVEL PROGRAMMING

class MyDist(features.Feature):

"""An implementation of Modeller’s distance feature (type 1) in

pure Python. For improved performance, see cuser_feat.py, which

implements the feature in C."""

numatoms = 2

def eval(self, mdl, atom_indices):

(a1, a2) = self.indices_to_atoms(mdl, atom_indices)

dist = ((a1.x - a2.x) ** 2 + (a1.y - a2.y) ** 2

+ (a1.z - a2.z) ** 2) ** 0.5

return dist

def deriv(self, mdl, atom_indices, feat):

(a1, a2) = self.indices_to_atoms(mdl, atom_indices)

dx1 = (a1.x - a2.x) / feat

dy1 = (a1.y - a2.y) / feat

dz1 = (a1.z - a2.z) / feat

dx2 = -dx1

dy2 = -dy1

dz2 = -dz1

return ((dx1, dx2), (dy1, dy2), (dz1, dz2))

def is_angle(self):

return False

mdl = complete_pdb(env, "1fdn")

sel = Selection(mdl)

rsr = mdl.restraints

at = mdl.atoms

rsr.add(forms.Gaussian(group=physical.bond,

feature=MyDist(at[’CA:1:A’], at[’C:1:A’]),

mean=1.5380, stdev=0.0364))

sel.energy()

7.1.2 User-defined restraint forms

To create a new restraint form, derive a new class from the base forms.RestraintForm. You should then override
the following functions: init , eval, vmin, rvmin, min mean, vheavy, rvheavy, heavy mean, and get range.
Note that presently you can only derive from this base class, not from Modeller built-in forms.

Restraint forms can act on one or more features (each of which has an accompanying integer modality, which
you can use for any purpose), and can take any number of floating-point parameters as input. The features
and parameters are stored in self. features and self. parameters respectively, but for convenience the base
constructor RestraintForm. init can set initial values for these.

The eval function is called from Modeller with the current feature values, their types and modalities, and
the parameter vector. You should return the objective function contribution and, if requested, the derivatives
with respect to each feature. The feature types are required by the deltaf function, which returns the difference
between the current feature value and the mean (a simple subtraction is not sufficient, as some feature types are
periodic). Note that you must use the passed parameter vector, as the class is not persistent, and as such the
self. parameters variable (or any other object variable you may have set) is not available to this function.

The get range function is used to define the feature range over which the form is clearly non-linear. It is

7.1. USER-DEFINED FEATURES AND RESTRAINT FORMS 229

simply passed a similar set of parameters to eval, and should return a 2-element tuple containing the minimum
and maximum feature values. It is only necessary to define this function if the form acts on only a single feature
and you want to be able to convert it to a cubic spline using Restraints.spline().

The other functions are used to return the minimal and heavy restraint violations (both absolute and relative;
see Section 5.3.1) and the means. The heavy and minimal means correspond to the global and local minima.

Example: examples/python/user form.py

from modeller import *

from modeller.scripts import complete_pdb

env = Environ()

env.io.atom_files_directory = [’../atom_files’]

log.verbose()

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

class MyGauss(forms.RestraintForm):

"""An implementation of Modeller’s harmonic/Gaussian restraint (type 3)

in pure Python"""

rt = 0.5900991 # RT at 297.15K, in kcal/mol

def __init__(self, group, feature, mean, stdev):

forms.RestraintForm.__init__(self, group, feature, 0, (mean, stdev))

def eval(self, feats, iftyp, modal, param, deriv):

(mean, stdev) = param

delt = self.deltaf(feats[0], mean, iftyp[0])

val = self.rt * 0.5 * delt**2 / stdev**2

if deriv:

fderv = self.rt * delt / stdev**2

return val, [fderv]

else:

return val

def vmin(self, feats, iftyp, modal, param):

(mean, stdev) = param

return self.deltaf(feats[0], mean, iftyp[0])

def rvmin(self, feats, iftyp, modal, param):

(mean, stdev) = param

return self.deltaf(feats[0], mean, iftyp[0]) / stdev

def min_mean(self, feats, iftyp, modal, param):

(mean, stdev) = param

return [mean]

def get_range(self, iftyp, modal, param, spline_range):

(mean, stdev) = param

return (mean - stdev * spline_range, mean + stdev * spline_range)

There is only one minimum, so the ’heavy’ mean is the same as the ’min’

vheavy = vmin

rvheavy = rvmin

heavy_mean = min_mean

https://salilab.org/modeller/examples/python/user_form.py

230 CHAPTER 7. MODELLER LOW-LEVEL PROGRAMMING

mdl = complete_pdb(env, "1fdn")

sel = Selection(mdl)

rsr = mdl.restraints

at = mdl.atoms

rsr.add(MyGauss(group=physical.bond,

feature=features.Distance(at[’CB:1:A’], at[’CA:1:A’]),

mean=1.5380, stdev=0.0364))

sel.energy()

Restraints using user-defined forms can be converted to splines for speed.

Only one-dimensional forms that define the get_range() method can be splined.

rsr.spline(MyGauss, features.Distance, physical.bond, spline_dx=0.05)

sel.energy()

7.1.3 User-defined energy terms

To create a new energy term, derive a new class from the base terms.EnergyTerm. You should then override the
eval function. You can also override the init function if you want to define function parameters. Objects of
this class can then be created and added to the EnergyData.energy terms list.

The eval function is called from Modeller with a Model object, and the indices of all selected atoms. You
should return the objective function contribution and, if requested, the derivatives with respect to the Cartesian
coordinates.

Example: examples/python/user term.py

from modeller import *

from modeller.scripts import complete_pdb

env = Environ()

log.verbose()

env.io.atom_files_directory = [’../atom_files’]

env.libs.topology.read(file=’$(LIB)/top_heav.lib’)

env.libs.parameters.read(file=’$(LIB)/par.lib’)

class MyTerm(terms.EnergyTerm):

"""Custom energy term, which tries to force all atoms to one side of

the x=10.0A plane"""

_physical_type = physical.absposition

Override the __init__ function so that we can pass in a ’strength’

parameter

def __init__(self, strength):

self.strength = strength

terms.EnergyTerm.__init__(self)

def eval(self, mdl, deriv, indats):

atoms = self.indices_to_atoms(mdl, indats)

e = 0.

dvx = [0.] * len(indats)

dvy = [0.] * len(indats)

dvz = [0.] * len(indats)

https://salilab.org/modeller/examples/python/user_term.py

7.2. MODELLER PROGRAMMING INTERFACE (API) 231

for (num, at) in enumerate(atoms):

Enforce a linearly increasing potential in the x direction

if at.x > 10.0:

e += (at.x - 10.0) * self.strength

dvx[num] += self.strength

if deriv:

return (e, dvx, dvy, dvz)

else:

return e

t = env.edat.energy_terms

t.append(MyTerm(strength=1.0))

mdl = complete_pdb(env, "1fdn")

sel = Selection(mdl)

print(sel.energy())

7.2 Modeller programming interface (API)

On most platforms, the core of the Modeller program is actually a dynamic library (’.so’, ’.dylib’ or ’.dll’
file). The Modeller program itself is just a thin ’wrapper’ which uses both this library and the Python library
to run scripts.

You can use the Modeller library in your own programs. To do this, you must use the API func-
tions defined in the Modeller header files, a collection of ’.h’ files which usually can be found in the
$MODINSTALL10v8/src/include directory, when compiling your program, and then link against the Modeller

library. It is most straightforward to do this in C (which we will use here as an example) although any language
which can interface with C libraries can be used. See the comments in the main header file ’modeller.h’ for
simple usage instructions.

The Python interface is also built from these header files, using the SWIG package. All of the files used to build
this interface can be found in the $MODINSTALL10v8/src/swig directory. You can use these to build an interface
for a different version of Python; see the ’README’ file in this directory for instructions.

If you installed the Modeller RPM package, you can run pkg-config - -cflags modeller to get the neces-
sary C compiler flags for you to be able to include the Modeller header(s). Similarly, the - -libs option outputs
the linker flags needed to link with the Modeller library. (If you did not install the RPM, you can get the same
information by running mod10.8 - -cflags.)

In many cases, it is more convenient to implement extensions to Modeller in C. These can work together with
the main Modeller code and any Python scripts, and can be much faster than implementing the code in Python.
See ’cuser feat.py’, ’cuser form.py’ and ’cuser term.py’ in the examples/c-extensions/ directory for
examples.

Example: examples/commands/c-example.c

include <glib.h>

include <stdio.h>

include <stdlib.h>

include <modeller.h>

/* Example of using Modeller from a C program. This simply reads in a PDB

* file, prints out some data from that file, and then writes out a new

* file in MMCIF format.

*

https://www.python.org/
https://www.python.org/
https://www.swig.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://salilab.org/modeller/examples/commands/c-example.c

232 CHAPTER 7. MODELLER LOW-LEVEL PROGRAMMING

* To compile, use (where XXX is your Modeller version):

* gcc -Wall -o c-example c-example.c ‘modXXX --cflags --libs‘ \

* ‘pkg-config --cflags --libs glib-2.0‘

* (If you use a compiler other than gcc, or a non-Unix system, you may need

* to run ’modXXX --cflags --libs’ manually and construct suitable compiler

* options by hand.)

*

* To run, you must ensure that the Modeller dynamic libraries are in your

* search path. This can be done on most systems by adding the directory

* reported by ’modXXX --libs’ to the LD_LIBRARY_PATH environment variable.

* (On Mac, set DYLD_LIBRARY_PATH instead. On Windows, PATH. On AIX, LIBPATH.)

*

* You must also ensure that Modeller knows where it was installed,

* and what the license key is. You can either do this by setting the

* MODINSTALLXXX and KEY_MODELLERXXX environment variables accordingly, or

* by calling the mod_install_dir_set() and mod_license_key_set() functions

* before you call mod_start(). For example, if Modeller is installed in

* /lib/modeller on a 32-bit Linux system, the following would work from the

* command line (all on one line), where KEY is your license key:

* KEY_MODELLERXXX=KEY MODINSTALLXXX=/lib/modeller/

* LD_LIBRARY_PATH=/lib/modeller/lib/i386-intel8 ./c-example

*/

/* Exit, reporting the Modeller error, iff one occurred. */

void handle_error(int ierr)

{

if (ierr != 0) {

GError *err = mod_error_get();

fprintf(stderr, "Modeller error: %s\n", err->message);

g_error_free(err);

exit(1);

}

}

int main(void)

{

struct mod_libraries *libs;

struct mod_model *mdl;

struct mod_io_data *io;

struct mod_file *fh;

int ierr, *sel1, nsel1;

/* Uncomment these lines to hard code install location and license key,

rather than setting MODINSTALLXXX and KEY_MODELLERXXX environment

variables (see above) */

/* mod_install_dir_set("/lib/modeller"); */

/* mod_license_key_set("KEY"); */

mod_start(&ierr);

handle_error(ierr);

mod_header_write();

mod_log_set(2, 1);

libs = mod_libraries_new(NULL);

fh = mod_file_open("${LIB}/restyp.lib", "r");

7.2. MODELLER PROGRAMMING INTERFACE (API) 233

if (fh) {

mod_libraries_read_libs(libs, fh, &ierr);

mod_file_close(fh, &ierr);

} else {

ierr = 1;

}

handle_error(ierr);

mod_libraries_rand_seed_set(libs, -8123);

mdl = mod_model_new(NULL);

io = mod_io_data_new();

fh = mod_file_open("../atom_files/2nbt.pdb", "r");

if (fh) {

mod_model_read(mdl, io, libs, fh, "PDB", "FIRST:@LAST: ", 7, 0, &ierr);

mod_file_close(fh, &ierr);

} else {

ierr = 1;

}

handle_error(ierr);

printf("Model of %s solved at resolution %f, rfactor %f\n", mdl->seq.name,

mdl->seq.resol, mdl->seq.rfactr);

fh = mod_file_open("new.cif", "w");

if (fh) {

mod_selection_all(mdl, &sel1, &nsel1);

mod_model_write(mdl, libs, sel1, nsel1, fh, "MMCIF", 0, 1, "", &ierr);

g_free(sel1);

mod_file_close(fh, &ierr);

} else {

ierr = 1;

}

handle_error(ierr);

mod_libraries_free(libs);

mod_model_free(mdl);

mod_io_data_free(io);

mod_end();

return 0;

}

234 CHAPTER 7. MODELLER LOW-LEVEL PROGRAMMING

Appendix A

Methods

A.1 Dynamic programming for sequence and structure comparison
and searching

In this section, the basic dynamic programming method for sequence alignment is described [Šali & Blundell, 1990].
This method forms the core of the pairwise and multiple sequence and structure comparisons as well as of the
sequence database searching.

A.1.1 Pairwise comparison

The residue by residue scores Wij can be used directly in the sequence alignment algorithm of Needleman &
Wunsch [Needleman & Wunsch, 1970] to obtain the comparison of two protein sequences or structures. The only
difference between the two types of comparison is in the type of the comparison matrix. In the case of sequence,
the amino acid substitution matrix is used. In the case of 3D structure, the Euclidean distance (or some function
of it) between two equivalent atoms in the current optimal superposition is used [Šali & Blundell, 1990].

The problem of the optimal alignment of two sequences as addressed by the algorithm of Needleman & Wunsch
is as follows. We are given two sequences of elements and an M times N score matrix W where M and N are the
numbers of elements in the first and second sequence. The scoring matrix is composed of scores Wij describing
differences between elements i and j from the first and second sequence respectively. The goal is to obtain an
optimal set of equivalences that match elements of the first sequence to the elements of the second sequence. The
equivalence assignments are subject to the following “progression rule”: for elements i and k from the first sequence
and elements j and l from the second sequence, if element i is equivalenced to element j, if element k is equivalenced
to element l and if k is greater than i, l must also be greater than j. The optimal set of equivalences is the one
with the smallest alignment score. The alignment score is a sum of scores corresponding to matched elements,
also increased for occurrences of non-equivalenced elements (ie gaps). For a detailed discussion of this and related
problems see [Sankoff & Kruskal, 1983].

We summarize the dynamic programming formulae used by Modeller to obtain the optimal alignment since
they differ slightly from those already published [Sellers, 1974,Gotoh, 1982]. The recursive dynamic programming

235

236 APPENDIX A. METHODS

formulae that give a matrix D are:

Di,j = min







Pi,j

Di−1,j−1 +Wi,j

Qi,j

Pi,j = min

{

Di−1,j + g(1)
Pi−1,j + v

Qi,j = min

{

Di,j−1 + g(1)
Qi,j−1 + v

(A.1)

where g(l) is a linear gap penalty function:
g(l) = u+ v · l . (A.2)

Note that only a vector is needed for the storage of P and Q. The uppermost formula in Eq. A.1 is calculated for
i =M and j = N . Variable l is a gap length and parameters u and v are gap-penalty constants.

The arrays D, P and Q are initialized as follows:

Di,0 =

{

0, i ≤ e
g(i− e), e < i ≤ N

D0,j =

{

0, j ≤ e
g(j − e), e < j ≤ N

Pi,0 = Qi,0 = ∞, i = 1, 2, . . . ,M

P0,j = Q0,j = ∞, j = 1, 2, . . . , N

(A.3)

where parameter e is the maximal number of elements at sequence termini which are not penalized with a gap-
penalty if not equivalenced. A segment at the terminus of length e is termed an “overhang”. Note a difference
from [Gotoh, 1982] in the initialization of the P and Q arrays. Also note that only vectors Qi and Pj need to be
stored in computer, not the whole arrays.

The minimal score dM,N is obtained from

dM,N = min(Di,N , DM,j) (A.4)

where i = M,M − 1, . . . ,M − e and j = N,N − 1, . . . , N − e to allow for the overhangs. The equivalence
assignments are obtained by backtracking in matrix D. Backtracking starts from the element Di,j = dM,N .

A.1.2 Variable gap penalty

Please refer to [Madhusudhan et al., 2006] for a full description of the variable gap penalty dynamic programming
algorithm.

A.1.3 Local versus global alignment

The Kruskal and Sankoff version of the local alignment is implemented [Sankoff & Kruskal, 1983]; this is very
similar to the [Smith & Waterman, 1981] method. All the routines for the local alignment are exactly the same as
the routines for the global alignment except that during the construction of matrix D the alignment is restarted
each time the score becomes higher than a cutoff. The second difference is that the backtracking starts from the
lowest element in the matrix, wherever it is.

A.2. OPTIMIZATION OF THE OBJECTIVE FUNCTION BY MODELLER 237

A.1.4 Similarity versus distance scores

Each scoring matrix contains a flag determining whether it is a distance or similarity matrix. An appropriate
optimization is used automatically. This is achieved by using exactly the same code except that one side of
comparisons is multiplied by −1 when dealing with similarities as opposed to distances.

A.1.5 Multiple comparisons

In the discussion of the previous section, we have assumed that the sequences or structures would be compared in
a pairwise manner. However, such pairwise comparisons of several related proteins may not be self consistent, ie
the following transitivity rule can be broken: If residue a from protein A is equivalent to residue b in protein B
which in turn is equivalent to residue c in protein C then the residue a from protein A must also be equivalent to
residue c from protein C. This property is not always attained in the set of usual pairwise comparisons relating a
group of similar proteins. For this reason we proceed by simultaneously aligning all proteins. This is achieved by
aligning the second sequence with the first one, the third sequence with the alignment of the first two, etc. A more
general tree-like growth of the multiple alignment is not yet implemented.

If the number of all proteins is N , N − 1 alignments must be made to obtain the final multiple comparison. It
is noted that once an equivalence or gap is introduced it is not changed in later stages.

A.2 Optimization of the objective function by Modeller

This section describes the optimization methods implemented in Modeller. The general form of the objec-
tive function and the structure of optimization are similar to molecular dynamics programs, such as Charmm

[MacKerell et al., 1998].

A.2.1 Function

Modeller minimizes the objective function F with respect to Cartesian coordinates of ∼ 10, 000 atoms (3D points)
that form a system (one or more molecules):

F = F (R) = Fsymm +
∑

i

ci(fi,pi) (A.5)

where Fsymm is an optional symmetry term defined in Eq. A.99, R are Cartesian coordinates of all atoms, c is a
restraint i, f is a geometric feature of a molecule, and p are parameters. For a 10,000 atom system there can be on
the order of 200,000 restraints. The form of c is simple; it includes a quadratic function, cosine, a weighted sum of
a few Gaussian functions, Coulomb law, Lennard-Jones potential, cubic splines, and some other simple functions.
The geometric features presently include a distance, an angle, a dihedral angle, a pair of dihedral angles between
two, three, four atoms and eight atoms, respectively, the shortest distance in the set of distances (not documented
further), solvent accessibility in Å2, and atom density expressed as the number of atoms around the central atom.
A pair of dihedral angles can be used to restrain such strongly correlated features as the mainchain dihedral angles
Φ and Ψ. Each of the restraints also depends on a few parameters pi that generally vary from a restraint to a
restraint. Some restraints can restrain pseudo-atoms such as a gravity center of several atoms.

Modeller allows some atoms to be fixed during optimization; i.e., only selected atoms are allowed to be
moved. Similarly, Modeller also allows only a subset of all restraints to be actually used in the calculation of the
objective function. Each subset is indicated by a list of indices specifying the selected atoms or restraints.

There are two kinds of restraints, static and dynamic, that both contribute to the objective function as indicated
in Eq. A.5:

F = Fsymm + Fs + Fd . (A.6)

The static restraints and their parameters are pre-defined; i.e., they are given before the call to the optimizer and
are not changed during optimization. The dynamic restraints are re-generated repeatedly during optimization.
Usually, the CPU time is spent evenly between the two kinds of restraints, although the dynamic restraints become
more important as the size of the system increases. All dynamic restraints are always selected and they can restrain
only pairs of atoms. In all other respects, the two kinds of restraints are the same.

238 APPENDIX A. METHODS

The dynamic restraints are obtained from a dynamic pairs list (the non-bonded pairs list). Each dynamic pair
corresponds to at least one restraint, which may or may not be violated. The dynamic pairs list includes only the
pairs of atoms that satisfy the following three conditions: (1) One or both atoms in a pair are allowed to move.
(2) The two atoms are not connected through one, two, or three chemical bonds. (3) The two atoms are closer
than a preset cutoff distance (e.g., 4 Å). There are on the order of 5000 atom pairs in the dynamic pairs list when
only soft-sphere overlap restraints are used. Currently, the restraint types on the dynamic atom pairs that can be
selected include the soft-sphere overlap, Lennard-Jones, Coulomb interactions, and Modeller non-bonded spline
restraints.

The existence of the dynamic pairs list is justified by the fact that dynamic pairs are usually a small fraction of
all possible atom–atom pairs (N · (N −1)/2, where N is the number of atoms in a system). The use of the dynamic
pairs list becomes especially beneficent as the size of the system increases.

The actual algorithm for creating the dynamic pairs list varies with the size of the system, whether or not all
atoms are allowed to move, or whether or not the user wants to include the fixed environment in the calculation of
non-bonded restraints involving the selected atoms. See Section 6.11 for more information.

The hash-function algorithm is used to determine whether or not two atoms are a dynamic atom pair. This
algorithm is about 20 times slower than a lookup table but it requires much less memory and still spends a
negligible fraction of the total CPU time. A hash-function table is prepared only once before the start of the
optimization and any other operation involving an evaluation of the objective function (e.g., Selection.energy(),
Selection.hot atoms(), Section 6.11).

The dynamic pairs list is not necessarily re-generated each time the objective function is evaluated, although
the contribution of the restraint to the objective function is calculated in each call to the objective function routine
with the current values of the Cartesian coordinates. The dynamic pairs list is re-generated only when maximal
atomic shifts accumulate to a value larger than a preset cutoff. This cutoff is chosen such that there cannot be a
violation of a restraint without having its atom pair on the dynamic pairs list. The dynamic pairs list is recalculated
in ∼ 20% and ∼ 2% of the objective function calls at the beginning and the end of optimization, respectively.

Each evaluation of the objective function or of its first derivatives with respect to the Cartesian coordinates
involves the following steps:

1. Calculate non-fixed pseudo-atoms from the current atomic positions.

2. Update the dynamic pairs list, if necessary.

3. Calculate the violations of selected restraints and all other quantities that are shared between the calculations
of the objective function and its derivatives.

4. Sum the contributions of all violated restraints to the objective function and the derivatives.

A.2.2 Optimizers

Modeller currently implements a Beale restart conjugate gradients algorithm [Shanno & Phua, 1980,
Shanno & Phua, 1982] and a molecular dynamics procedure with the leap-frog Verlet integrator [Verlet, 1967].
The conjugate gradients optimizer is usually used in combination with the variable target function method
[Braun & Gõ, 1985] which is implemented with the AutoModel class (Section A.4). The molecular dynamics pro-
cedure can be used in a simulated annealing protocol that is also implemented with the AutoModel class.

Molecular dynamics

Force in Modeller is obtained by equating the objective function F with internal energy in kcal/mole. The
atomic masses are all set to that of C12 (Modeller unit is kg/mole). The initial velocities at a given temperature
are obtained from a Gaussian random number generator with a mean and standard deviation of:

v̄x = 0 (A.7)

σx =

√

kBT

mi
(A.8)

A.2. OPTIMIZATION OF THE OBJECTIVE FUNCTION BY MODELLER 239

where kB is the Boltzmann constant, mi is the mass of one C12 atom, and the velocity is expressed in
angstroms/femtosecond.

The Newtonian equations of motion are integrated by the leap-frog Verlet algorithm [Verlet, 1967]:

ṙi

(

t+
δt

2

)

= ṙi

(

t− δt

2

)

− ∂F

∂ri(t)

δt

mi
(A.9)

ri (t+ δt) = ri(t) + ṙi

(

t+
δt

2

)

δt (A.10)

where ri is the position of atom i. In addition, velocity is capped at a maximum value, before calculating the shift,
such that the maximal shift along one axis can only be cap atom shift. The velocities can be equilibrated every
equilibrate steps to stabilize temperature. This is achieved by scaling the velocities with a factor f :

f =
√

T/Tkin (A.11)

Tkin =
Ekin
1
2kbNf

(A.12)

Ekin =
1

2

Natoms
∑

i

miṙ
2
i (A.13)

where kB is the Boltzmann constant, Nf the number of degrees of freedom, Ekin the current kinetic energy and
Tkin the current kinetic temperature.

Langevin dynamics

Langevin dynamics (LD) are implemented as in [Loncharich et al., 1992]. The equations of motion (Equation A.9)
are modified as follows:

ṙi

(

t+
δt

2

)

= ṙi

(

t− δt

2

)

1− 1
2γδt

1 + 1
2γδt

+

(

Ri −
∂F

∂ri(t)

)

δt

mi

1

1 + 1
2γδt

(A.14)

where γ is a friction factor (in fs−1) and Ri a random force, chosen to have zero mean and standard deviation

σ(Ri) =

√

2γmikBT

δt
(A.15)

Self-guided MD and LD

Modeller also implements the self-guided MD [Wu & Wang, 1999] and LD [Wu & Brooks, 2003] methods. For
self-guided MD, the equations of motion (Equation A.9) are modified as follows:

gi(t) =

(

1− δt

tl

)

gi(t− δt) +
δt

tl

(

λgi(t− δt)− ∂F

∂ri(t)

)

(A.16)

ṙi

(

t+
δt

2

)

= ṙi

(

t− δt

2

)

+

(

λgi(t)−
∂F

∂ri(t)

)

δt

mi
(A.17)

where λ is the guiding factor (the same for all atoms), tl the guide time in femtoseconds, and gi a guiding force,
set to zero at the start of the simulation. (Position ri is updated in the usual way.)

For self-guided Langevin dynamics, the guiding forces are determined as follows (terms are as defined in Equa-
tion A.14):

gi(t) =

(

1− δt

tl

)

gi(t− δt) +
δt

tl
γmiṙi

(

t− δt

2

)

(A.18)

240 APPENDIX A. METHODS

A scaling parameter χ is then determined by first making an unconstrained half step:

ṙ′i(t) = ṙi

(

t− δt

2

)

+
1

2

(

λgi(t) +Ri −
δF

δri(t)

)

δt

mi
(A.19)

ζ =

(

1 +
γδt

2

) ∑N
i λgi(t)ṙ

′

i(t)
∑N

i miṙ
′2
i (t)

(A.20)

χ =

(

1 +
(γ + ζ)δt

2

)

−1

(A.21)

Finally, the velocities are advanced using the scaling factor:

ṙi

(

t+
δt

2

)

= (2χ− 1)ṙi

(

t− δt

2

)

+

(

λgi(t) +Ri −
∂F

∂ri(t)

)

δt

mi
(A.22)

Rigid bodies

Where rigid bodies are used, these are optimized separately from the other atoms in the system. This has the
additional advantage of reducing the number of degrees of freedom.

Rigid molecular dynamics

The state of each rigid body is specified by the position of the center of mass, rCOM , and an orientation quaternion,
q̃ [Goldstein, 1980]. (The quaternion has 4 components, q1 through q4, of which the first three refer to the vector
part, and the last to the scalar.) The translational and rotational motions of each body are separated. Each body
is translated about its center of mass using the standard Verlet equations (Equation A.9) using the force:

∂F

∂rCOM
=
∑

i

∂F

∂ri
(A.23)

where the sum i operates over all atoms in the rigid body, and ri is the position of atom i in real space.

For the rotational motion, the orientation quaternions are again integrated using the same Verlet equations.
For this, the quaternion accelerations are calculated using the following relation [Rapaport, 1997]:

¨̃q =
1

2
W

T









ω̇′

x

ω̇′

y

ω̇′

z

−2
∑

m q̇2m









(A.24)

where W is the orthogonal matrix

W =









q4 q3 −q2 −q1
−q3 q4 q1 −q2
q2 −q1 q4 −q3
q1 q2 q3 q4









(A.25)

and ω̇′

k is the first derivative of the angular velocity (in the body-fixed frame) about axis k - i.e., the angular
acceleration. These angular accelerations are in turn calculated from the Euler equations for rigid body rotation,
such as:

ω̇′

x =
Tx + (Iy − Iz)ω

′

yω
′

z

Ix
(A.26)

(Similar equations exist for the y and z components.) The angular velocities ω′ are obtained from the quaternion
velocities:









ω′

x

ω′

y

ω′

z

0









= 2W ˙̃q (A.27)

A.2. OPTIMIZATION OF THE OBJECTIVE FUNCTION BY MODELLER 241

The torque, T , in the body-fixed frame, is calculated as

T = A

∑

i

(ri − rCOM)×− ∂F

∂ri
(A.28)

and A is the rotation matrix to convert from world space to body space

A = 2





q21 + q24 − 1
2 q1q2 + q3q4 q1q3 − q2q4

q1q2 − q3q4 q22 + q24 − 1
2 q2q3 + q1q4

q1q3 + q2q4 q2q3 − q1q4 q23 + q24 − 1
2



 (A.29)

and finally the x component of the inertia tensor, Ix, is given by

Ix =
∑

i

mi(r
′2
i,y + r′

2
i,z) (A.30)

where r′
i
is the position of each atom in body space (i.e. relative to the center of mass, and unrotated), and mi

is the mass of atom i (taken to be the mass of one C12 atom, as above). Similar relations exist for the y and z
components.

The kinetic energy of each rigid body (used for temperature control) is given as a combination of translation
and rotational components:

Ebody
kin =

1

2
(
∑

i

m)ṙ2COM +
1

2
(Ixω

′2
x + Iyω

′2
y + Izω

′2
z) (A.31)

Initial translational and rotational velocities of each rigid body are set in the same way as for atomistic dynamics.

Rigid minimization

The state of each rigid body is specified by 6 parameters: the position of the center of mass, rCOM , and the
rotations in radians about the body-fixed axes: θx, θy, and θz. The first derivative of the objective function F with
respect to the center of mass is obtained from Equation A.23, and those with respect to the angles from:

∂F

∂θk
= Mkr

′

i
· ∂F
∂ri

(A.32)

The transformation matrices Mk are given as:

Mx =





0 − sin θz sin θx − cos θz sin θy cos θx sin θz cos θx − cos θz sin θy sin θx
0 − cos θz sin θx + sin θz sin θy cos θx cos θz cos θx + sin θz sin θy sin θx
0 − cos θy cos θx − cos θy sin θx



 (A.33)

My =





− cos θz sin θy − cos θz cos θy sin θx cos θz cos θy cos θx
sin θz sin θy sin θz cos θy sin θx − sin θz cos θy cos θx
− cos θy sin θy sin θx − sin θy cos θx



 (A.34)

Mz =





− sin θz cos θy cos θz cos θx + sin θz sin θy sin θx cos θz sin θx − sin θz sin θy cos θx
− cos θz cos θy − sin θz cos θx + cos θz sin θy sin θx − sin θz sin θx − cos θz sin θy cos θx

0 0 0



 (A.35)

The atomic positions ri are reconstructed when necessary from the body’s orientation by means of the following
relation:

ri = Mr′
i
+ rCOM (A.36)

where M is the rotation matrix

M =





cos θz cos θy sin θz cos θx − cos θz sin θy sin θx sin θz sin θx + cos θz sin θy cos θx
− sin θz cos θy cos θz cos θx + sin θz sin θy sin θx cos θz sin θx − sin θz sin θy cos θx

− sin θy − cos θy sin θx cos θy cos θx



 (A.37)

242 APPENDIX A. METHODS

A.3 Equations used in the derivation of the molecular pdf

A.3.1 Features and their derivatives

Distance

Distance is defined by points i and j:
d =

√
rij · rij = |rij | = rij (A.38)

where
rij = ri − rj . (A.39)

The first derivatives of d with respect to Cartesian coordinates are:

∂d

∂ri
=

rij

|rij |
(A.40)

∂d

∂rj
= − ∂d

∂ri
(A.41)

Angle

Angle is defined by points i, j, and k, and spanned by vectors ij and kj:

α = arccos
rij · rkj
|rij ||rkj |

. (A.42)

It lies in the interval from 0 to 180◦. Internal Modeller units are radians.

The first derivatives of α with respect to Cartesian coordinates are:

∂α

∂ri
=

∂α

∂ cosα

∂ cosα

∂ri
=

1√
1− cos2 α

1

rij

(

rij

rij
cosα− rkj

rkj

)

(A.43)

∂α

∂rk
=

∂α

∂ cosα

∂ cosα

∂rk
=

1√
1− cos2 α

1

rkj

(

rkj

rkj
cosα− rij

rij

)

(A.44)

∂α

∂rj
= − ∂α

∂ri
− ∂α

∂rk
(A.45)

These equations for the derivatives have a numerical instability when the angle goes to 0 or to 180◦. Presently,
the problem is ‘solved’ by testing for the size of the angle; if it is too small, the derivatives are set to 0 in the hope
that other restraints will eventually pull the angle towards well behaved regions. Thus, angle restraints of 0 or 180◦

should not be used in the conjugate gradients or molecular dynamics optimizations.

Dihedral angle

Dihedral angle is defined by points i, j, k, and l (ijkl):

χ = sign(χ) arccos
(rij × rkj) · (rkj × rkl)

|rij × rkj ||rkj × rkl|
(A.46)

where
sign(χ) = sign[rkj · (rij × rkj)× (rkj × rkl)] . (A.47)

The first derivatives of χ with respect to Cartesian coordinates are:

dχ

dr
=

dχ

d cosχ

d cosχ

dr
(A.48)

A.3. EQUATIONS USED IN THE DERIVATION OF THE MOLECULAR PDF 243

where
dχ

d cosχ
=

(

d cosχ

dχ

)

−1

= − 1

sinχ
(A.49)

and

∂ cosχ

∂ri
= rkj × a (A.50)

∂ cosχ

∂rj
= rik × a− rkl × b (A.51)

∂ cosχ

∂rk
= rjl × b− rij × a (A.52)

∂ cosχ

∂rl
= rij × b (A.53)

a =
1

|rij × rkj |

(

rkj × rkl

|rkj × rkl|
− cosχ

rij × rkj

|rij × rkj |

)

(A.54)

b =
1

|rkj × rkl|

(

rij × rkj

|rij × rkj |
− cosχ

rkj × rkl

|rkj × rkl|

)

. (A.55)

These equations for the derivatives have a numerical instability when the angle goes to 0. Thus, the following
set of equations is used instead [van Schaik et al., 1993]:

rmj = rij × rkj (A.56)

rnk = rkj × rkl (A.57)

∂χ

∂ri
=

rkj
r2mj

rmj (A.58)

∂χ

∂rl
= − rkj

r2nk
rnk (A.59)

∂χ

∂rj
=

(

rij · rkj
r2kj

− 1

)

∂χ

∂ri
− rkl · rkj

r2kj

∂χ

∂rl
(A.60)

∂χ

∂rk
=

(

rkl · rkj
r2kj

− 1

)

∂χ

∂rl
− rij · rkj

r2kj

∂χ

∂ri
(A.61)

The only possible instability in these equations is when the length of the central bond of the dihedral, rkj ,
goes to 0. In such a case, which should not happen, the derivatives are set to 0. The expressions for an improper
dihedral angle, as opposed to a dihedral or dihedral angle, are the same, except that indices ijkl are permuted to
ikjl. In both cases, covalent bonds ij, jk, and kl are defining the angle.

Atomic solvent accessibility

This is the accessibility value calculated by the PSA algorithm (see Model.write data()). This is usually set by
the last call to Restraints.make() or Restraints.make distance(). First derivatives are not calculated, and
are always returned as 0.

Atomic density

Atomic density for a given atom is simply calculated as the number of atoms within a distance
EnergyData.contact shell of that atom. First derivatives are not calculated, and are always returned as 0.

244 APPENDIX A. METHODS

Atomic coordinates

The absolute atomic coordinates xi, yi and zi are available for every point i, primarily for use in anchoring points
to planes, lines or points. Their first derivatives with respect to Cartesian coordinates are of course simply 0 or 1.

A.3.2 Restraints and their derivatives

The chain rule is used to find the partial derivatives of the feature pdf with respect to the atomic coordinates.
Thus, only the derivatives of the pdf with respect to the features are listed here.

Single Gaussian restraint

The pdf for a geometric feature f (e.g., distance, angle, dihedral angle) is

p =
1

σ
√
2π

exp

[

−1

2

(

f − f̄

σ

)2
]

. (A.62)

A corresponding restraint c in the sum that defines the objective function F is

c = − ln p =
1

2

(

f − f̄

σ

)2

− ln
1

σ
√
2π

(A.63)

(Note that since the second term is constant for a given restraint, it is ignored. c is also scaled by RT in kcal/mol
with T = 297.15K to allow these scores to be summed with CHARMM energies.)

The first derivatives with respect to feature f are:

dc

df
=
f − f̄

σ

1

σ
. (A.64)

The relative heavy violation with respect to f is given as:

f − f̄

σ
(A.65)

Multiple Gaussian restraint

The polymodal pdf for a geometric feature f (e.g., distance, angle, dihedral angle) is

p =
n
∑

i=1

ωipi =
n
∑

i=1

ωi
1

σi
√
2π

exp

[

−1

2

(

f − f̄i
σi

)2
]

. (A.66)

A corresponding restraint c in the sum that defines the objective function F is (as before, this is scaled by RT):

c = − ln p = − ln

n
∑

i=1

ωipi (A.67)

The first derivatives with respect to feature f are:

dc

df
=

1

p

n
∑

i=1

ωipi ·
[

f − f̄i
σi

1

σi

]

. (A.68)

When any of the normalized deviations vi = (f − f̄i)/σi is large, there are numerical instabilities in calculating
the derivatives because vi are arguments to the exp function. Robustness is ensured as follows. The ‘effective’
normalized deviation is used in all the equations above when the magnitude of normalized violation v is larger than
cutoff rgauss1 (10 for double precision). This scheme works up to rgauss2 (200 for double precision); violations

A.3. EQUATIONS USED IN THE DERIVATION OF THE MOLECULAR PDF 245

larger than that are ignored. This trick is equivalent to increasing the standard deviation σi. A slight disadvantage
is that there is a discontinuity in the first derivatives at rgauss1. However, if continuity were imposed, the
range would not be extended (this is equivalent to linearizing the Gaussian, but since it is already linear for large
deviations, a linearization with derivatives smoothness would not introduce much change at all).

M = 37 ; M2/2 has to be smaller than the largest argument to exp (A.69)

A =
1

M

rgauss2−M

rgauss2− rgauss1
(A.70)

B =
rgauss2

M

M − rgauss1

rgauss2− rgauss1
(A.71)

v =
f − f̄i
σi

(A.72)

F = A |v|+B (A.73)

v′ = v/F (A.74)

Now, Eqs. A.66–A.68 are used with v′ instead of v. For single precision, M = 12, rgauss1 = 4, rgauss2 = 100.

The relative heavy violation with respect to f is given as:

max
ωi

(f − f̄i)/σi (A.75)

Multiple binormal restraint

The polymodal pdf for a geometric feature (f1, f2) (e.g., a pair of dihedral angles) is

p =
n
∑

i=1

ωipi =
n
∑

i=1

ωi
1

2πσ1iσ2i
√

(1− ρ2i)
·

exp

{

− 1

2(1− ρ2i)

[

(

f1 − f̄1i
σ1i

)2

− 2ρi
f1 − f̄1i
σ1i

f2 − f̄2i
σ2i

+

(

f2 − f̄2i
σ2i

)2
]}

. (A.76)

where ρ < 1. ρ is the correlation coefficient between f1 and f2. Modeller actually uses the following series
expansion to calculate p:

p =

n
∑

i=1

ωi
1

2πσ1iσ2i
√

(1− ρ2i)
·

exp

{

− 1

1− ρ2i

[

1− cos(f1 − f̄1i)

σ2
1i

− ρi
sin(f1 − f̄1i)

σ1i

sin(f2 − f̄2i)

σ2i
+

1− cos(f2 − f̄2i)

σ2
2i

]}

. (A.77)

A corresponding restraint c in the sum that defines the objective function F is (as before, this is scaled by RT):

c = − ln p = − ln

n
∑

i=1

ωipi (A.78)

The first derivatives with respect to features f1 and f2 are:

∂c

∂f1
=

1

p

n
∑

i=1

[

ωipi ·
1

σ1i(1− ρ2i)

(

sin(f1 − f̄1i)

σ1i
− ρi

cos(f1 − f̄1i) sin(f2 − f̄2i)

σ2i

)]

(A.79)

∂c

∂f2
=

1

p

n
∑

i=1

[

ωipi ·
1

σ2i(1− ρ2i)

(

sin(f2 − f̄2i)

σ2i
− ρi

cos(f2 − f̄2i) sin(f1 − f̄1i)

σ1i

)]

. (A.80)

246 APPENDIX A. METHODS

The relative heavy violation with respect to f is given as:

max
ωi

√

√

√

√− 1

2(1− ρ2i)

[

(

f1 − f̄1i
σ1i

)2

− 2ρi
f1 − f̄1i
σ1i

f2 − f̄2i
σ2i

+

(

f2 − f̄2i
σ2i

)2
]

(A.81)

Lower bound

This is like the left half of a single Gaussian restraint:

p =

{

pgauss ; f < f̄
0 ; f ≥ f̄

(A.82)

where f̄ is a lower bound and pgauss is given in Eq. A.62. A similar equation relying on the first derivatives of a
Gaussian p holds for the first derivatives of a lower bound.

Upper bound

This is like the right half of a single Gaussian restraint:

p =

{

pgauss ; f > f̄
0 ; f ≤ f̄

(A.83)

where f̄ is an upper bound and pgauss is given in Eq. A.62. A similar equation relying on the first derivatives of a
Gaussian p holds for the first derivatives of an upper bound.

Cosine restraint

This is usually used for dihedral angles f (improper dihedrals generally use a Gaussian restraint instead):

c = |b| − b cos(nf + a) (A.84)

where b is Charmm force constant, a is phase shift (tested for 0 and 180◦), and n is periodicity (tested for 1, 2,
3, 4, 5, and 6). The Charmm phase value from the Charmm parameter library corresponds to a − 180◦. The
force constant b can be negative, in effect offsetting the phase a for 180◦ compared to the same but positive force
constant.

dc

df
= bn sin(nf + a) (A.85)

Coulomb restraint

c =
1

ǫr

qiqj
f
s(f, f1, f2) (A.86)

s(f, f1, f2) =











1 ; f ≤ f1
(f2−f)2(f2+2f−3f1)

(f2−f1)3
; fo < f ≤ f2

0 ; f > f2

(A.87)

where qi and qj are the atomic charges of atoms i and j, obtained from the Charmm topology file, that are at a
distance f . ǫr is the relative dielectric, controlled by the EnergyData.relative dielectric variable. Function s(f, f1, f2)
is a switching function that smoothes the potential down to zero in the interval from f1 to f2 (f2 > f1). The total
Coulomb energy of a molecule is a sum over all pairs of atoms that are not in the same bonds or bond angles.
1–4 energy for the 1–4 atom pairs in the same dihedral angle corresponds to the ELEC14 Modeller term; the
remaining longer-range contribution corresponds to the ELEC term.

A.3. EQUATIONS USED IN THE DERIVATION OF THE MOLECULAR PDF 247

The first derivatives are:

dc

df
= − c

f
+
c

s

ds

df
(A.88)

ds

df
=







0 ; f ≤ f1
6(f2−f)(f1−f)

(f2−f1)3
; f1 < f ≤ f2

0 ; f > f2

(A.89)

The violations of this restraint are always reported as zero.

Lennard-Jones restraint

Usually used for non-bonded distances:

c =

[

(

A

f

)12

−
(

B

f

)6
]

s(f, f1, f2) (A.90)

The parameters f1 and f2 of the switching function can be different from those in Eq. A.87. The parameters A
and B are obtained from the Charmm parameter file (NONBOND section) where they are given as Ei and rj such
that Eij(f) = −4

√

EiEj [(ρij/f)
12− (ρij/f)

6] in kcal/mole for f in angstroms and ρ = (ri+rj)/2
1/6; the minimum

of E is −
√

EiEj at f = (ri + rj), and its zero is at f = ρ. The total Lennard-Jones energy should be evaluated
over all pairs of atoms that are not in the same bonds or bond angles. The parameters A and B for 1–4 pairs in
dihedral angles can be different from those for the other pairs; they are obtained from the second set of Ei and ri
in the Charmm parameter file, if it exists. 1–4 energy corresponds to the LJ14 Modeller term; the remaining
longer-range contribution corresponds to the LJ term.

The first derivatives are:

dc

df
=

Cs

f
− C

ds

df
(A.91)

C = −12

(

A

f

)12

+ 6

(

B

f

)6

(A.92)

As f tends toward zero, the repulsive part of the energy dominates, and approaches infinity. Near-infinite
forces result in unstable trajectories during optimization. This is particularly a problem in the first few steps of
optimization starting from randomized, interpolated, or otherwise non-physical atomic coordinates. To avoid this,
the potential is simply artificially truncated: if A/f exceeds 6, f is treated as being equal to A/6.

The violations of this restraint are always reported as zero.

Spline restraint

Any restraint form can be represented by a cubic spline [Press et al., 1992]:

c = Acj +Bcj+1 + Cc′′j +Dc′′j+1 (A.93)

A =
fj+1 − f

fj+1 − fj
(A.94)

B = 1−A (A.95)

C =
1

6
(A3 −A)(fj+1 − fj)

2 (A.96)

D =
1

6
(B3 −B)(fj+1 − fj)

2 (A.97)

where fj ≤ f ≤ fj+1.

248 APPENDIX A. METHODS

The first derivatives are:

dc

df
=
cj+1 − cj
fj+1 − fj

− 3A2 − 1

6
(fj+1 − fj)c

′′

j +
3B2 − 1

6
(fj+1 − fj)c

′′

j+1 (A.98)

The values of c and c′ beyond f1 and fn are obtained by linear interpolation from the termini. A violation of
the restraint is calculated by finding the global minimum. A relative violation is estimated by using a standard
deviation (e.g., force constant) obtained by fitting a parabola to the global minimum.

Variable spacing of spline points could be used to save on memory. However, this would increase the execution
time, so it is not used.

To calculate the relative heavy violation, the feature value f̄ that results in the smallest value of the restraint
is obtained by interpolation, and a Gaussian function is fitted locally around this value to obtain the standard
deviation σ. These are then used in Eq. A.65.

Symmetry restraint

The asymmetry penalty added to the objective function is defined as

Fsymm =
∑

i<j

ωiωj(dij − d′ij)
2 (A.99)

where the sum runs over all pairs of equivalent atoms ij, ωi is an atom weight for atom i, dij is an intra-molecular
distance between atoms ij in the first segment, and d′ij is the equivalent distance in the second segment.

For each i < j, the first derivatives are:

∂c

∂dij
= 2ωiωj(dij − d′ij)

dij

dij
(A.100)

∂c

∂d′

ij

= −2ωiωj(dij − d′ij)
d′

ij

d′ij
(A.101)

Thus, the total first derivatives are obtained by summing the two expressions above for all i and j > i distances.

A.4 Flowchart of comparative modeling by Modeller

This section describes a flowchart of comparative modeling by Modeller, as implemented in the AutoModel class
(see chapter 2).

Input: script file, alignment file, PDB file(s) for template(s).

Output:

job.log log file
job.ini initial conformation for optimization
job.rsr restraints file
job.sch VTFM schedule file
job.B9999???? PDB atom file(s) for the model(s) of the target sequence
job.V9999???? violation profiles for the model(s)
job.D9999???? progress of optimization
job.BL9999???? optional loop model(s)
job.DL9999???? progress of optimization for loop model(s)
job.IL9999???? initial structures for loop model(s)

The main Modeller routines used in each step are given in parentheses.

1. Read and check the alignment between the target sequence and the template structures
(Alignment.append() and Alignment.check()).

2. Calculate restraints on the target from its alignment with the templates:

A.4. FLOWCHART OF COMPARATIVE MODELING BY MODELLER 249

(a) Generate molecular topology for the target sequence (Model.generate topology()). Disulfides in the
target are assigned here from the equivalent disulfides in the templates (Model.patch ss templates()).
Any user defined patches are also done here (as defined in the AutoModel.special patches() routine).

(b) Calculate coordinates for atoms that have equivalent atoms in the templates as an average over all
templates (Model.transfer xyz()) (alternatively, read the initial coordinates from a file).

(c) Build the remaining unknown coordinates using internal coordinates from the Charmm topology library
(Model.build()).

(d) Write the initial model to a file with extension .ini (Model.write()).

(e) Generate stereochemical, homology-derived, and special restraints (Restraints.make()) (alternatively,
skip this and assume the restraints file already exists):

stereochemical restraint type = ’bond angle dihedral improper’
mainchain dihedrals Φ, Ψ restraint type = ’phi-psi binormal’
mainchain dihedral ω restraint type = ’omega dihedral’
sidechain dihedral χ1 restraint type = ’chi1 dihedral’
sidechain dihedral χ2 restraint type = ’chi2 dihedral’
sidechain dihedral χ3 restraint type = ’chi3 dihedral’
sidechain dihedral χ4 restraint type = ’chi4 dihedral’
mainchain CA–CA distance restraint type = ’distance’
mainchain N–O distance restraint type = ’distance’
sidechain–mainchain distance restraint type = ’distance’
sidechain–sidechain distance restraint type = ’distance’
ligand distance restraints AutoModel.nonstd restraints() routine
user defined AutoModel.special restraints() routine
non-bonded pairs distance restraint type = ’sphere’; calculated on the fly

(f) Write all restraints to a file with extension .rsr (Restraints.write()).

3. Calculate model(s) that satisfy the restraints as well as possible. For each model:

(a) Generate the optimization schedule for the variable target function method (VTFM).

(b) Read the initial model (usually from the .ini file from 2.d) (Model.read()).

(c) Randomize the initial structure by adding a random number between ±AutoModel.deviation angstroms
to all atomic positions (Selection.randomize xyz()).

(d) Optimize the model:

• Partially optimize the model by VTFM; Repeat the following steps as many times as specified by
the optimization schedule:

– Select only the restraints that operate on the atoms that are close enough in sequence, as specified
by the current step of VTFM (Restraints.pick()).

– Optimize the model by conjugate gradients, using only currently selected restraints
(ConjugateGradients()).

• Refine the model by simulated annealing with molecular dynamics, if so selected:

– Do a short conjugate gradients optimization (ConjugateGradients()).

– Increase temperature in several steps and do molecular dynamics optimization at each temper-
ature (MolecularDynamics()).

– Decrease temperature in several steps and do molecular dynamics optimization at each temper-
ature (MolecularDynamics()).

– Do a short conjugate gradients optimization (ConjugateGradients()).

(e) Calculate the remaining restraint violations and write them out (Selection.energy()).

(f) Write out the final model to a file with extension .B9999????.pdb where ???? indicates the model
number (Model.write()). Also write out the violations profile.

(g) Superpose the models and the templates, if so selected by AutoModel.final malign3d = True, and write
them out (Alignment.append model(), Alignment.malign3d()).

(h) Do loop modeling if so selected using the LoopModel class.

250 APPENDIX A. METHODS

A.5 Loop modeling method

The loop modeling method first takes the generated model, and selects all standard residues around gaps in
the alignment for additional loop modeling. (To select a different region for modeling, simply redefine the
LoopModel.select loop atoms() routine to select the relevant atoms.) An initial loop conformation is then
generated by simply positioning the atoms of the loop with uniform spacing on the line that connects the main-
chain carbonyl oxygen and amide nitrogen atoms of the N- and C-terminal anchor regions respectively (to change
this, override the LoopModel.build ini loop() method), and this model is written out to a file with the .IL

extension.

Next, a number of loop models are generated from LoopModel.loop.starting model to
LoopModel.loop.ending model. Each takes the initial loop conformation and randomizes it by ±5Å in each
of the Cartesian directions. The model is then optimized thoroughly twice, firstly considering only the loop atoms
and secondly with these atoms “feeling” the rest of the system. The loop optimization relies on an atomistic
distance-dependent statistical potential of mean force for nonbond interactions [Melo & Feytmans, 1997]. This
classifies all amino acid atoms into one of 40 atom classes (as defined in $LIB/atmcls-melo.lib) and applies
a potential as Modeller cubic spline restraints (as defined in $LIB/melo-dist1.lib). No homology-derived
restraints are used during this procedure. Each loop model is written out with the .BL extension.

For more information, please consult the loop modeling paper [Fiser et al., 2000] or look at the loop modeling
class itself in modlib/modeller/automodel/loopmodel.py.

Appendix B

File formats

B.1 Alignment file (PIR)

The preferred format for comparative modeling is related to the PIR database format:

C; A sample alignment in the PIR format; used in tutorial

>P1;5fd1

structureX:5fd1:1 :A:106 :A:ferredoxin:Azotobacter vinelandii: 1.90: 0.19

AFVVTDNCIKCKYTDCVEVCPVDCFYEGPNFLVIHPDECIDCALCEPECPAQAIFSEDEVPEDMQEFIQLNAELA

EVWPNITEKKDPLPDAEDWDGVKGKLQHLER*

>P1;1fdx

sequence:1fdx:1 :A:54 :A:ferredoxin:Peptococcus aerogenes: 2.00:-1.00

AYVINDSC--IACGACKPECPVNIIQGS--IYAIDADSCIDCGSCASVCPVGAPNPED-----------------

-------------------------------*

The first line of each sequence entry specifies the protein code after the >P1; line identifier. The line identifier
must occur at the beginning of the line. For example, 1fdx is the protein code of the first entry in the alignment
above. The protein code corresponds to the Sequence.code variable. Conventionally, this code is the PDB code
followed by an optional one-letter chain ID, but this is not required; codes can be any unique identifier. If the
code in the alignment file is made up of several words (separated by spaces or tabs), only the first is read in; the
remainder are treated by Modeller as comments.

The second line of each entry contains information necessary to extract atomic coordinates of the segment from
the original PDB, mmCIF, or BinaryCIF coordinate set. The fields in this line are separated by colon characters,
‘:’. The fields are as follows:

Field 1: A specification of whether or not 3D structure is available and of the type of the method used to obtain
the structure (structureX, X-ray; structureN, NMR; structureM, model; sequence, sequence). Only
structure is also a valid value.

Field 2: The PDB, mmCIF, or BinaryCIF filename or code. While the protein code in the first line of an entry,
which is used to identify the entry, must be unique for all proteins in the file, the name in this field, which
is used to get structural data, does not have to be unique. It can be a full file name with path (e.g.,
’/home/foo/pdbs/mystructure.pdb’), a file name without a path (e.g., ’mystructure.pdb’ or ’mystructure.cif’),
or a PDB code (e.g., ’1abc’; Modeller will automatically convert the code to a filename by adding ’.pdb’,
’.cif’ or ’.ent’ file extensions as necessary, and/or a ’pdb’ prefix). In the latter two cases, where no path is
given, Modeller will search in the directories specified by IOData.atom files directory to find PDB, mmCIF
or BinaryCIF files.

Fields 3–6: The residue and chain identifiers (see below) for the first (fields 3–4) and last residue (fields 5–6) of the
sequence in the subsequent lines. There is no need to edit the coordinate file if a contiguous sequence of

251

252 APPENDIX B. FILE FORMATS

residues is required — simply specify the beginning and ending residues of the required contiguous region of
the chain. If the beginning residue is not found, no segment is read in. If the ending residue identifier is not
found in the coordinate file, the last residue in the coordinate file is used. By default, the whole file is read
in.

The unspecified beginning and ending residue numbers and chain id’s for a structure entry in an alignment
file are taken automatically from the corresponding atom file, if possible. The first matching sequence in the
atom file that also satisfies the explicitly specified residue numbers and chain id’s is used. A residue number
is not specified when a blank character or a dot, ‘.’, is given. A chain id is not specified when a dot, ‘.’, is
given. This slight difference between residue and chain id’s is necessary because a blank character is a valid
chain id.

Field 7: Protein name. Optional.

Field 8: Source of the protein. Optional.

Field 9: Resolution of the crystallographic analysis. Optional.

Field 10: R-factor of the crystallographic analysis. Optional.

A residue identifier is simply the 5-letter PDB residue number (including insertion code, if any), and a chain
identifier the PDB chain code1. For example, ’10I:A’ is residue number ’10I’ in chain ’A’, and ’6:’ is residue
number ’6’ in a chain without a name.

The residue number for the first position (resID1) in the model segment range ’resID1:chainID1

resID2:chainID2’ can be either a real residue number or ’FIRST’ (which indicates the first residue in a matching
chain). The residue number for the second position (resID2) in the model segment range can be either: (1) a real
residue number; (2) ’LAST’ (which indicates the last residue in a matching chain); (3) ’+nn’ (which requests the
total number of residues to read, in which case the chain id is ignored); or ’END’ (which indicates the last residue
in the PDB file). The chain id for either position in the model segment range (chainID1 or chainID2) can be either:
(1) a real chain id (including a blank/space/null/empty); or ’@’, which matches any chain id.

Examples, assuming a two chain PDB file (chains A and B):

• ’15:A 75:A’ reads residues 15 to 75 in chain A.

• ’FIRST:@ 75:@’ reads the first 75 residues in chain A (the first chain).

• ’FIRST:@ LAST:@’ reads all residues in chain A, assuming ’FIRST’ is not a real number of the non-first
residue in chain A.

• ’FIRST:@ +125:’ reads a total of 125 residues, regardless of the PDB numbering, starting from the first
residue in chain A.

• ’10:@ LAST:’ reads all residues from 10 in chain A to the end of the file (chain id for the last residue is
irrelevant), again assuming ’LAST’ is not a real residue number of a non-last residue.

• ’FIRST:@ END:’ reads the whole file no matter what, the chainID is ignored completely.

For the selection segment the string containing ’@’ will match any residue number and chainID. For example,
’@:A’ is the first residue in chain ’A’ and ’@:@’ is the first residue in the coordinate file. The last chain can not
be specified in a general way, except if it is the last residue in the file.

When an alignment file is used in conjunction with structural information, the first two fields must be filled in;
the rest of them can be empty. If the alignment is not used in conjunction with structural data, all but the first
field can be empty. This means that in comparative modeling, the template structures must have at least the first
two fields specified while the target sequence must only have the first field filled in. Thus, a simple second line of
an entry in an alignment file in the ’PIR’ format is

1 for PDB format, this is a 1-letter chain ID; for mmCIF or BinaryCIF format, this is the author-provided chain/asym ID
(atom site.auth asym id) if available, otherwise the canonical asym ID (atom site.label asym id), both of which can be multi-
ple characters in length

B.2. RESTRAINTS FILE 253

structure:pdb_file:.:.:.:.::::

This entry will result in reading from PDB, mmCIF, or BinaryCIF file pdb file the structure segment corre-
sponding to the sequence in the subsequent lines of the alignment entry.

Each sequence must be terminated by the terminating character, ‘*’.

When the first character of the sequence line is the terminating character, ‘*’, the sequence is obtained from
the specified PDB, mmCIF, or BinaryCIF coordinate file (Section 5.1.3).

Chain breaks are indicated by ‘/’. There should not be more than one chain break character to indicate a single
chain break (use gap characters instead, ‘-’). All residue types specified in $RESTYP LIB, but not patching residue
types, are allowed; there are on the order of 100 residue types specified in the $RESTYP LIB library. To add your
own residue types to this library, see Section 3.1, Question 8.

The alignment file can contain any number of blank lines between the protein entries. Comment lines can occur
outside protein entries and must begin with the identifiers ‘C;’ or ‘R;’ as the first two characters in the line.

An alignment file is also used to input non-aligned sequences.

B.2 Restraints file

The first line of a restraints file should read ’MODELLER5 VERSION: MODELLER FORMAT’. (’USER’ format is no longer
supported.)

After this, there is one entry per line. The format is free, except that the first character has to be at the
beginning of the line. When the line starts with ’R’, it contains a restraint, ’E’ indicates a pair of atoms to
be excluded from the calculation of the dynamic non-bonded pairs list, ’P’ indicates a pseudo atom definition
(Section 5.3.2), ’S’ a symmetry restraint, and ’B’ a rigid body.

B.2.1 Restraints

An ’R’ line should look like:

R Form Modality Feature Group Numb_atoms Numb_parameters Numb_Feat (Modal2 Feat2 NumAt2 ...) Atom_indices Parameters

These parameters encode the restraints information as given in Section 5.3.

Here, Form is the restraint form type (see Table B.1). Modality is an integer argument to Form, and specifies
the number of single Gaussians in a poly-Gaussian pdf, number of terms in a multiple binormal, periodicity n
of the cosine in the cosine potential, and the number of spline points for cubic splines. Feature is the feature
that this restraint acts on (see Table B.2.) Group is the physical feature type, and should be an index from
Table 6.1. Numb atoms is the total number of atoms this restraint acts on, Numb parameters is the number of
defined parameters, and Numb Feat is the number of features the restraint acts on. Numb Feat is typically 1, except
for the multiple binormal (where it should be 2) and ND spline (where it can be any number). In cases where
Numb Feat is greater than 1, the modality, feature type, and number of atoms of each subsequent feature should
be listed in order after Numb Feat. (Note that Numb atoms is the number of atoms acted on by the entire restraint,
while NumAt2 refers just to the atoms acted on by the 2nd feature.) Finally, the integer atom indices and floating
point parameters are listed.

For example,

R 3 1 1 1 2 2 1 437 28 1.5000 0.1000

will create a Gaussian restraint on the distance between atoms 437 and 28, with mean of 1.5 and standard deviation
of 0.1.

B.2.2 Excluded pairs

An ’E’ line should look like:

254 APPENDIX B. FILE FORMATS

Numeric form Form type
1 forms.LowerBound

2 forms.UpperBound

3 forms.Gaussian

4 forms.MultiGaussian

5 forms.LennardJones

6 forms.Coulomb

7 forms.Cosine

8 forms.Factor

9 forms.MultiBinormal

10 forms.Spline or forms.NDSpline
50+ user-defined restraint forms

Table B.1: Numerical restraint forms

Numeric feature Feature type
1 features.Distance

2 features.Angle

3,4 features.Dihedral

6 features.MinimalDistance

7 features.SolventAccess

8 features.Density

9 features.XCoordinate

10 features.YCoordinate

11 features.ZCoordinate

12 features.DihedralDiff

50+ user-defined feature types

Table B.2: Numerical feature types

E Atom_index_1 Atom_index_2

where the two numeric atom indices are given (see Section 5.3.3).

For example,

E 120 540

would exclude the nonbond interaction between atoms 120 and 540 from the list.

B.2.3 Pseudo atoms

A ’P’ line should look like:

P Pseudo_atom_index Pseudo_atom_type Numb_real_atoms Real_atom_indices

These parameters encode the pseudo atom information as given in Section 5.3.2. Pseudo atom index is the
atom index, which should be a number between NATM+1 and NATM+NPSEUDO, where NATM is the number
of real atoms in the model, and NPSEUDO the number of pseudo atoms. Pseudo atom type is the numerical
pseudo atom type, as given in Table B.3. The pseudo atom is defined as an average of Numb real atoms, of indices
Real atom indices. For example,

P 144 1 3 120 121 122

B.3. PROFILE FILE 255

creates a pseudo atom at index 144, which is a gravity center of the 3 atoms 120, 121 and 122.

Numeric pseudo atom type Pseudo atom type
1 pseudo atom.GravityCenter

2 virtual atom.CH1

3 virtual atom.CH1A

4 pseudo atom.CH2

5 virtual atom.CH2

6 pseudo atom.CH31

7 pseudo atom.CH32

Table B.3: Numerical pseudo atom types

B.2.4 Symmetry restraints

An ’S’ line should look like:

S Num_Pairs Atom_indices1 Atom_indices2 Pair_weights

These parameters encode a single symmetry restraint, as given in Section 5.3.5. Num Pairs is the number of
atom pairs to be constrained. Atom indices1 and Atom indices2 are the numeric indices of the atoms in each
pair, while Pair weights are the weights for each pair.

For example,

S 2 4 8 10 12 1.0 0.5

creates a symmetry restraint in which atoms 4 and 10 are constrained to be similar to each other with weight 1.0,
while atoms 8 and 12 are constrained with weight 0.5.

B.2.5 Rigid bodies

A ’B’ line should look like:

B Scale_factor Atom_indices

These parameters encode the rigid body information as given in Section 5.3.4. Atom indices are the numeric
indices of all atoms in the rigid body, and Scale factor the scaling factor from system state to body orientation.

For example,

B 5 10 25 30

creates a rigid body containing atoms 5, 10, 25 and 30.

B.3 Profile file

The format of the profile file (text) is as follows:

Number of sequences: 4
Length of profile : 20
N_PROF_ITERATIONS : 3
GAP_PENALTIES_1D : -900.0 -50.0
MATRIX_OFFSET : 0.0
RR_FILE : ${MODINSTALLCVS}/modlib//as1.sim.mat

256 APPENDIX B. FILE FORMATS

1 2ctx X 0 71 1 71 0 0 0 0. 0.0 IRCFITPDITS---KDCPN-
2 2abx X 0 74 1 74 0 0 0 0. 0.0 IVCHTTATIPS-SAVTCPPG
3 2nbt X 0 66 1 66 0 0 0 0. 0.0 RTCLISPSS---TPQTCPNG
4 1fas X 0 61 1 61 0 0 0 0. 0.0 TMCYSHTTTSRAILTNCG--

The first six lines begin with a ’#’ in the first column and give a few general details of the profile.

The first line gives the number of sequences in the profile. The line should be in the following format: ’(24x,i6)’.

The second line gives the number of positions in the profile. This should be in ’(24x,i6)’ format also.

The third line gives the value of the n prof iterations variable. The fourth line gives the value of the
gap penalties 1d variable. The fifth line gives the value of the matrix offset variable. The sixth line gives the
value of the rr file variable.

The number of sequences in the profile and its length are used to allocate memory for the profile arrays, so they
should provide an accurate description of the profile.

The values of the variables described in lines 3 through 6 are not used internally by Modeller. But the
Profile.read() command expects to find a total of six header lines. These records represent useful information
when Profile.build() was used to construct the profile.

The remaining lines consist of the alignment of the sequences in the profile. The format of these lines is of the
form: ’(i5,1x,a40,1x,a1,1x,7(i5,1x),f5.0,1x,g10.2,1x,32767a1)’

The various columns that precede the sequence are:

1. The index number of the sequence in the profile.

2. The code of the sequence (similar to Sequence.code).

3. The type of sequence (’S’ for sequence, ’X’ for structure). This depends on the original source of the sequences.
(See Alignment.to profile() and SequenceDB.read()).

4. The iteration in which the sequence was selected as significant. (See Profile.build()).

5. The length of the database sequence.

6. The starting position of the target sequence in the alignment.

7. The ending position of the target sequence in the alignment.

8. The starting position of the database sequence in the alignment.

9. The ending position of the database sequence in the alignment.

10. The number of equivalent positions in the alignment.

11. The sequence identity of between the target sequence and the database sequence.

12. The e-value of the alignment. (See Profile.build()).

13. The sequence alignment.

Many of the fields described above are valid only when the profile that is written out is the result of
Profile.build().

B.4 Binary files

Binary files are standard HDF5 files. These files are in a very compact, non-human-readable format, and are thus
very rapid for Modeller to access. However, unlike some binary files, they are machine-independent (e.g., they
can be moved from a Windows machine to a Mac or a Linux box without problems). They can also be accessed
using standard HDF5 tools.

Note that the binary files used by Modeller 8v2 and earlier are not compatible with the current format. If
you have any such files, they must be regenerated from their corresponding text files.

https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/

Appendix C

Converting Top scripts from old
Modeller versions

Previous versions of Modeller used Top as their scripting language. Top is a language similar in syntax to
Fortran, which is also used by Asgl. For increased power and flexibility, interoperability with other programs,
and improved ease of use, Modeller now uses Python for its control language.

C.1 Running old scripts unchanged

For compatibility with old codes, Modeller will still run most Top scripts. By default, the program expects
to read new-style Python scripts, but if the script file extension ends in ’.top’ (as in previous versions), it will
be assumed to be a Top file and will be run as such. Note, however, that this behavior is deprecated and will
probably be removed entirely in a later release. Also bear in mind that some newer commands and features will
not be available in Top; thus, it is recommended that you convert your Top scripts to Python.

If you do wish to run old scripts unchanged, please note that the GO TO function is no longer present in
the Top language. If you have code which makes use of this function, you should use the EXIT and CYCLE
flow control statements instead, which either terminate a DO loop or skip to its next iteration. Single-line IF
statements are no longer supported either; you should use the ELSE and END IF statements to build multi-line
IF clauses instead. See the scripts in the bin directory for examples.

C.2 Converting Top scripts to Python

C.2.1 Top commands and variables

Top variables come in four varieties — strings, reals, integers, logicals — as either single values or lists. The
equivalents in Python are the standard ’str’, ’float’, ’int’ and ’bool’ types, respectively, while lists can be
represented as ’list’ or ’tuple’ objects. In essence, this means that strings must be quoted, logical on and
off become bool True and False respectively, and lists must be comma-separated and enclosed in parentheses.
Also, the ’=’ operator is not mandatory in Top, but it is in Python. See the Python documentation for more
information. For example, consider the following assignments in Top:

SET STRVAR = foo # Set a string variable (quotes not required)

SET REALVAR 3.4 # Set a real variable (= not required either)

SET INTVAR = 4 # Set an integer variable

SET LOGVAR = on # Set a logical variable

SET INTLIST = 1 1 3 5 # Set a list of integers

SET STRLIST = ’one’ ’two’ ’three’ # Set a list of strings

The equivalent Python code would be:

257

https://salilab.org/asgl/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/

258 APPENDIX C. CONVERTING TOP SCRIPTS FROM OLD MODELLER VERSIONS

STRVAR = ’foo’ # Set a string variable

REALVAR = 3.4 # Set a real variable

INTVAR = 4 # Set an integer variable

LOGVAR = True # Set a logical variable

INTLIST = (1, 1, 3, 5) # Set a list of integers

STRLIST = (’one’, ’two’, ’three’) # Set a list of strings

Variables in Top are case-insensitive; that is, the names GAP PENALTIES 1D and gap penalties 1d refer to the
same variable. (Upper case is usually used, but this is just by convention.) Python variables are case-sensitive, so
these two names refer to different variables. For consistency with other codes, all Python commands and variables
used by Modeller are lower-case.

All variables in Top are global; that is, once they are set, their value is kept for the rest of the program (or
until changed again). This is irrespective of whether the variable is set while calling a Top command, or whether
an explicit SET command is used. For example, this Top script:

ALIGN GAP_PENALTIES_1D = 900 50

will behave identically to this code:

SET GAP_PENALTIES_1D = 900 50

ALIGN

In Python, on the other hand, each command takes a number of arguments. For example, the align() command
takes a gap penalties 1d argument. The value of this argument affects only this call to align(), i.e. it is a local
variable. Thus, the exact equivalent to both of the Top scripts above would be:

aln.align(gap_penalties_1d=(900, 50))

where ’aln’ is an Alignment object (see section C.2.2). This only sets the 1D gap penalties for this invocation
of align(), and so is less likely to cause problems later in your script. If you want to call a routine several times
with the same set of arguments, it is recommended that you save the arguments in local Python variables, use
subroutines or classes, or use ’for’ loops.

C.2.2 Top models and alignments

In Top, commands may operate implicitly on one or more of the standard models or alignments in memory.
For example, ALIGN always operates on ALIGNMENT1, READ MODEL always operates on MODEL1, and
READ MODEL2 always operates on MODEL2. MODEL2 is a ‘cut-down’ model, used only for some operations
(such as SUPERPOSE) and cannot be used to build full models, for example.

In Python, the models and alignments (and sequence databases, densities, etc.) are explicit, and are represented
by classes. You can have as many models or alignments as you like, provided you have enough memory. Commands
are simply methods of these classes. For example, consider the following:

env = Environ()

aln = Alignment(env)

aln.align(gap_penalties_1d=(900, 50))

This creates a new instance of the Environ class (as above, this is used to provide default variables and the like),
and calls it ’env’ (you can call it whatever you like). This is then used to create a new Alignment class object,
called ’aln’. The following align() command then operates on the ’aln’ alignment object. (Note, however, that
new alignments are empty, so this example wouldn’t do anything interesting.)

C.2.3 Top to Python correspondence

Please use the tables below to see which Python commands and variables correspond to old Top commands and
variables. Variables which are not listed in these tables have the same names as the old Top equivalents (albeit in
lower case).

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/

C.2. CONVERTING TOP SCRIPTS TO PYTHON 259

Top command Python equivalent
ADD RESTRAINT Restraints.add()
ALIGN Alignment.align()
ALIGN2D Alignment.align2d()
ALIGN3D Alignment.align3d()
ALIGN CONSENSUS Alignment.consensus()
ALN TO PROF Alignment.to profile()
BUILD MODEL Model.build()
BUILD PROFILE Profile.build()
CALL use Python subroutines
CHECK ALIGNMENT Alignment.check()
CLOSE use Python file object
COLOR ALN MODEL Model.color()
COMPARE Alignment.compare structures()
COMPARE ALIGNMENTS Alignment.compare with()
CONDENSE RESTRAINTS Restraints.condense()
DEBUG FUNCTION Selection.debug function()
DEFINE INTEGER use Python ’int’ variables
DEFINE LOGICAL use Python ’bool’ variables
DEFINE REAL use Python ’float’ variables
DEFINE STRING use Python ’str’ variables
DEFINE SYMMETRY Restraints.add()
DELETE ALIGNMENT del(Alignment)
DELETE FILE modfile.delete()
DELETE RESTRAINT Restraints.unpick()
DENDROGRAM Environ.dendrogram()
DESCRIBE Alignment.describe()
DO use Python while or for loops
EDIT ALIGNMENT Alignment.edit()
EM GRID SEARCH Density.grid search()
END SUBROUTINE use Python subroutines
ENERGY Selection.energy()
EXIT use Python while or for loops
EXPAND ALIGNMENT use Alignment.append model() in a loop
GENERATE TOPOLOGY Model.generate topology()
ID TABLE Alignment.id table()
IF use Python if statement
INCLUDE use Python import statement
INQUIRE modfile.inquire()
IUPAC MODEL Model.to iupac()
MAKE CHAINS Model.make chains()
MAKE REGION Model.make region()
MAKE RESTRAINTS Restraints.make()
MAKE SCHEDULE Schedule.make for model()
MAKE TOPOLOGY MODEL Topology.make()
MALIGN Alignment.malign()
MALIGN3D Alignment.malign3d()
MUTATE MODEL Selection.mutate()
OPEN use Python file object
OPERATE use Python arithmetic
OPTIMIZE ConjugateGradients() or MolecularDynamics(), or <Schedule> objects
ORIENT MODEL Model.orient()
PATCH Model.patch()
PATCH SS MODEL Model.patch ss()
PATCH SS TEMPLATES Model.patch ss templates()

HTTPS://WWW.PYTHON.ORG/
https://www.python.org/

260 APPENDIX C. CONVERTING TOP SCRIPTS FROM OLD MODELLER VERSIONS

PICK ATOMS Use <Selection> objects
PICK HOT ATOMS Selection.hot atoms()
PICK RESTRAINTS Restraints.pick()
PRINCIPAL COMPONENTS Environ.principal components()
PROFILE PROFILE SCAN Profile.scan()
PROF TO ALN Alignment.append profile() or Profile.to alignment()
RANDOMIZE XYZ Selection.randomize xyz()
READ use Python file object
READ ALIGNMENT Alignment.append()
READ ALIGNMENT2 Alignment.append()
READ ATOM CLASSES GroupRestraints()
READ DENSITY Density.read()
READ MODEL Model.read()
READ MODEL2 Model.read()
READ PARAMETERS Parameters.read() or GroupRestraints.append()
READ PROFILE Profile.read()
READ RESTRAINTS Restraints.append()
READ RESTYP LIB Environ()
READ SCHEDULE Use <Schedule> objects
READ SEQUENCE DB SequenceDB.read()
READ TOPOLOGY Topology.read() or Topology.append()
REINDEX RESTRAINTS Restraints.reindex()
RENAME SEGMENTS Model.rename segments()
REORDER ATOMS Model.reorder atoms()
RESET do not use
RETURN use Python subroutines
ROTATE DIHEDRALS Selection.rotate dihedrals()
ROTATE MODEL Selection.translate(), Selection.transform(), or Selection.rotate origin()
SALIGN Alignment.salign()
SEGMENT MATCHING Alignment.segment matching()
SEQFILTER SequenceDB.filter()
SEQUENCE COMPARISON Alignment.compare sequences()
SEQUENCE SEARCH SequenceDB.search()
SEQUENCE TO ALI Alignment.append model()
SET use Python variables
SPLINE RESTRAINTS Restraints.spline()
STOP do not use
STRING IF use Python if statement
STRING OPERATE use Python arithmetic
SUBROUTINE use Python subroutines
SUPERPOSE Selection.superpose()
SWITCH TRACE actions.Trace()
SYSTEM Environ.system()
TIME MARK info.time mark()
TRANSFER RES NUMB Model.res num from()
TRANSFER XYZ Model.transfer xyz()
UNBUILD MODEL Selection.unbuild()
WRITE use Python file object
WRITE ALIGNMENT Alignment.write()
WRITE DATA Model.write data()
WRITE MODEL Model.write()
WRITE MODEL2 Model.write()
WRITE PDB XREF use <Residue> objects
WRITE PROFILE Profile.write()
WRITE RESTRAINTS Restraints.write()
WRITE SCHEDULE Schedule.write()

C.2. CONVERTING TOP SCRIPTS TO PYTHON 261

WRITE SEQUENCE DB SequenceDB.write()
WRITE TOP do not use
WRITE TOPOLOGY MODEL Topology.write()

Table C.1: Correspondence between Top and Python commands.

Top variable Python equivalent
ALIGN CODES Sequence.code

ATOM FILES Sequence.atom file

ATOM FILES DIRECTORY IOData.atom files directory

CONTACT SHELL EnergyData.contact shell

COULOMB SWITCH EnergyData.coulomb switch

COVALENT CYS EnergyData.covalent cys

DYNAMIC ACCESS do not use
DYNAMIC COULOMB EnergyData.dynamic coulomb

DYNAMIC LENNARD EnergyData.dynamic lennard

DYNAMIC MODELLER EnergyData.dynamic modeller

DYNAMIC PAIRS set automatically; do not use
DYNAMIC SPHERE EnergyData.dynamic sphere

EXCL LOCAL EnergyData.excl local

HETATM IO IOData.hetatm

HYDROGEN IO IOData.hydrogen

LENNARD JONES SWITCH EnergyData.lennard jones switch

MOLPDF return value from Selection.energy()
NLOGN USE EnergyData.nlogn use

NONBONDED SEL ATOMS EnergyData.nonbonded sel atoms

NUMB OF SEQUENCES len(Alignment)
N SCHEDULE len(schedule)
OUTPUT CONTROL use log.level()
RADII FACTOR EnergyData.radii factor

RELATIVE DIELECTRIC EnergyData.relative dielectric

SCHEDULE STEP do not use
SPHERE STDV EnergyData.sphere stdv

TOPOLOGY MODEL Topology.submodel

UPDATE DYNAMIC EnergyData.update dynamic

WATER IO IOData.water

Table C.2: Correspondence between Top and Python variables.

HTTPS://WWW.PYTHON.ORG/
https://www.python.org/

262 APPENDIX C. CONVERTING TOP SCRIPTS FROM OLD MODELLER VERSIONS

Bibliography

Braun, W. & Gõ, N. (1985). J. Mol. Biol. 186, 611–626.

Brünger, A. T. (1992). X-PLOR Manual Version 3.1. Yale University New Haven, Connecticut.

Dong, G. Q., Fan, H., Schneidman-Duhovny, D., Webb, B., & Sali, A. (2013). Bioinformatics, 29, 3158–3166.
(Also available online).

Felsenstein, J. (1985). Evolution, 39, 783–791.

Fiser, A., Do, R. K. G., & Šali, A. (2000). Protein Sci. 9, 1753–1773. (Also available online).

Gallicchio, E. & Levy, R. M. (2004). J. Comp. Chem. 25, 479–499.

Goldstein, H. (1980). Classical Mechanics, 2nd edition. Reading, Massachusetts: Addison-Wesley Publishing
Company.

Gotoh, O. (1982). J. Mol. Biol. 162, 705–708.

Hubbard, T. J. P. & Blundell, T. L. (1987). Protein Eng. 1, 159–171.

IUPAC-IUB (1970). Biochem. 9, 3471–3479.

John, B. & Šali, A. (2003). Nucl. Acids Res. 31, 3982–3992. (Also available online).

Kabsch, W. & Sander, C. (1983). Biopolymers, 22, 2577–2637.

Karlin, S. & Altschul, S. F. (1990). Proc. Natl. Acad. Sci. USA, 87, 2264–2268.

Kendrew, J. C., Klyne, W., Lifson, S., Miyazawa, T., Némethy, G., Phillips, D. C., Ramachandran, G. N., &
Scheraga, H. (1970). J. Mol. Biol. 52, 1–17.

Loncharich, R. J., Brooks, B. R., & Pastor, R. W. (1992). Biopolymers, 32, 523–535.

MacKerell, Jr., A. D., Bashford, D., Bellott, M., Dunbrack Jr., R. L., Evanseck, J. D., Field, M. J., Fischer, S.,
Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick,
S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, III, W. E., Roux, B., Schlenkrich, M., Smith, J. C., Stote,
R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., & Karplus, M. (1998). J. Phys. Chem. B,

102, 3586–3616.

Madhusudhan, M. S., Mart́ı-Renom, M. A., Sanchez, R., & Šali, A. (2006). Prot. Eng. Des. & Sel. 19, 129–133.
(Also available online).

Madhusudhan, M. S., Webb, B. M., Mart́ı-Renom, M. A., Eswar, N., & Šali, A. (2009). Prot. Eng. Des. & Sel. 22
(9), 569–574. (Also available online).

Mart́ı-Renom, M. A., Madhusudhan, M. S., & Šali, A. (2004). Protein Sci. 13, 1071–1087. (Also available online).

Melo, F. & Feytmans, E. (1997). J. Mol. Biol. 267, 207–222.

Melo, F., Sánchez, R., & Šali, A. (2002). Protein Sci. 11, 430–448. (Also available online).

263

http://salilab.org/pdf/Dong_Bioinformatics_2013.pdf
http://salilab.org/pdf/Fiser_ProteinSci_2000.pdf
http://salilab.org/pdf/John_NucleicAcidsRes_2003.pdf
http://salilab.org/pdf/Madhusudhan_ProteinEngineering_2006.pdf
http://salilab.org/pdf/Madhusudhan_ProteinEngineering_2009.pdf
http://salilab.org/pdf/Marti-Renom_ProteinSci_2004.pdf
http://salilab.org/pdf/Melo_ProteinSci_2002.pdf

264 BIBLIOGRAPHY

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). J. Chem. Phys. 21,
1087–1092.

Needleman, S. B. & Wunsch, C. D. (1970). J. Mol. Biol. 48, 443–453.

Nicholls, A., Sharp, K. A., & Honig, B. (1991). Proteins, 11, 281–296.

Pearson, W. (1998). J. Mol. Biol. 276, 71–84.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical Recipes, 2nd edition.
Cambridge: Cambridge University Press.

Rapaport, D. C. (1997). The Art of Molecular Dynamics Simulation. Cambridge, UK: Cambridge University Press.

Richards, F. M. & Kundrot, C. E. (1988). Proteins, 3, 71–84.

Richmond, T. J. & Richards, F. M. (1978). J. Mol. Biol. 119, 537–555.

Šali, A. & Blundell, T. L. (1990). J. Mol. Biol. 212, 403–428. (Also available online).

Šali, A. & Blundell, T. L. (1993). J. Mol. Biol. 234, 779–815. (Also available online).

Šali, A. & Overington, J. (1994). Protein Sci. 3, 1582–1596. (Also available online).

Sankoff, D. & Kruskal, J. B. (1983). Time warps, string edits, and macromolecules: The theory and practice of

sequence comparison. Reading, MA: Addison-Wesley Publishing Company.

Sellers, P. H. (1974). J. Comb. Theor. A16, 253–258.

Shanno, D. F. & Phua, K. H. (1980). ACM Trans. Math. Soft. 6, 618–622.

Shanno, D. F. & Phua, K. H. (1982). In: Collected algorithms from ACM. Trans. Math. Software volume 2(1).

Shen, M.-Y. & Šali, A. (2006). Protein Sci. 15, 2507–2524. (Also available online).

Smith, T. F. & Waterman, M. S. (1981). J. Mol. Biol. 147, 195–197.

Subbiah, S., Laurents, D. V., & Levitt, M. (1993). Curr. Biol. 3, 141–148.

Sutcliffe, M. J., Haneef, I., Carney, D., & Blundell, T. L. (1987). Protein Eng. 1, 377–384.

Topf, M., Baker, M. L., John, B., Chiu, W., & Šali, A. (2005). J. Struct. Biol. 149, 191–203. (Also available online).

van Schaik, R. C., Berendsen, H. J., & Torda, A. E. (1993). J. Mol. Biol. 234, 751–762.

Verlet, J. (1967). Phys. Rev. 159, 98–103.

Wu, X. & Brooks, B. R. (2003). Chem. Phys. Lett. 381, 512–518.

Wu, X. & Wang, S. (1999). J. Chem. Phys. 110, 9401–9410.

http://salilab.org/pdf/Sali_JMolBiol_1990.pdf
http://salilab.org/pdf/Sali_JMolBiol_1993.pdf
http://salilab.org/pdf/Sali_ProteinSci_1994.pdf
http://salilab.org/pdf/Shen_ProteinSci_2006.pdf
http://salilab.org/pdf/Topf_JStructBiol_2005.pdf

	Copyright notice
	Acknowledgments
	Introduction
	What is MODELLER?
	MODELLER bibliography
	Obtaining and installing the program
	Bug reports
	Method for comparative protein structure modeling by MODELLER
	Using MODELLER for comparative modeling
	Preparing input files
	Running MODELLER

	Automated comparative modeling with AutoModel
	Simple usage
	More advanced usage
	Including water molecules, HETATM residues, and hydrogen atoms
	Changing the default optimization and refinement protocol
	Getting a very fast and approximate model
	Building a model from multiple templates
	Building an all hydrogen model
	Refining only part of the model
	Including disulfide bridges
	Generating new-style PDBx/mmCIF outputs
	Providing your own restraints file
	Using your own initial model
	Adding additional restraints to the defaults
	Building multi-chain models
	Residues and chains in multi-chain models
	Accessing output data after modeling is complete
	Fully automated alignment and modeling

	Loop optimization
	Automatic loop refinement after model building
	Defining loop regions for refinement
	Refining an existing PDB file

	Frequently asked questions and history
	Frequently asked questions (FAQ) and examples
	MODELLER updates
	Changes since release 10.7
	Changes since release 10.6

	Comparative modeling class reference
	AutoModel reference
	AutoModel() — prepare to build one or more comparative models
	AutoModel.library_schedule — select optimization schedule
	AutoModel.md_level — control the model refinement level
	AutoModel.outputs — all output data for generated models
	AutoModel.rand_method — control initial model randomization
	AutoModel.generate_method — control initial model generation
	AutoModel.max_var_iterations — select length of optimizations
	AutoModel.repeat_optimization — number of times to repeat optimization
	AutoModel.max_molpdf — objective function cutoff
	AutoModel.initial_malign3d — initial template alignment
	AutoModel.starting_model — first model to build
	AutoModel.ending_model — last model to build
	AutoModel.final_malign3d — final template-model alignment
	AutoModel.write_intermediates — write intermediate files during optimization
	AutoModel.trace_output — control optimization output
	AutoModel.max_ca_ca_distance — Distance cutoff for CA-CA homology-derived restraints
	AutoModel.max_n_o_distance — Distance cutoff for N-O homology-derived restraints
	AutoModel.max_sc_mc_distance — Distance cutoff for sidechain-mainchain homology-derived restraints
	AutoModel.max_sc_sc_distance — Distance cutoff for sidechain-sidechain homology-derived restraints
	AutoModel.blank_single_chain — Control chain ID for single-chain models
	AutoModel.set_output_model_format() — set format for output models
	AutoModel.get_optimize_actions() — get actions to carry out during the initial optimization
	AutoModel.get_refine_actions() — get actions to carry out during the refinement
	AutoModel.select_atoms() — select region for optimization and assessment
	AutoModel.auto_align() — generate an automatic initial alignment
	AutoModel.very_fast() — request rapid optimization
	AutoModel.make() — build all models
	AutoModel.cluster() — cluster all built models
	AutoModel.special_restraints() — add additional restraints
	AutoModel.nonstd_restraints() — add restraints on ligands
	AutoModel.special_patches() — add additional patches to the topology
	AutoModel.user_after_single_model() — analyze or refine each model
	AutoModel.get_model_filename() — get the model PDB/mmCIF name
	AutoModel.use_parallel_job() — parallelize model building
	AutoModel.guess_atom_types() — automatically assign Charmm atom types
	AutoModel.guess_atom_type() — automatically assign Charmm atom type

	AllHModel reference
	AllHModel() — prepare to build all-hydrogen models

	LoopModel reference
	LoopModel() — prepare to build models with loop refinement
	LoopModel.loop.md_level — control the loop model refinement level
	LoopModel.loop.max_var_iterations — select length of optimizations
	LoopModel.loop.library_schedule — select optimization schedule
	LoopModel.loop.starting_model — first loop model to build
	LoopModel.loop.ending_model — last loop model to build
	LoopModel.loop.write_selection_only — write PDB/mmCIFs containing only the loops
	LoopModel.loop.write_defined_only — only write non-loop atoms present in the input model
	LoopModel.loop.outputs — all output data for generated loop models
	LoopModel.select_loop_atoms() — select region for loop optimization and assessment
	LoopModel.get_loop_model_filename() — get the model PDB/mmCIF name
	LoopModel.user_after_single_loop_model() — analyze or refine each loop model
	LoopModel.read_potential() — read in the loop modeling potential
	LoopModel.build_ini_loop() — create the initial conformation of the loop

	DOPELoopModel reference
	DOPELoopModel() — prepare to build models with DOPE loop refinement

	DOPEHRLoopModel reference

	MODELLER general reference
	Miscellaneous rules and features of MODELLER
	MODELLER system
	Controlling breakpoints and the amount of output
	File naming
	File types

	Stereochemical parameters and molecular topology
	Modeling residues with non-existing or incomplete entries in the topology and parameter libraries

	Spatial restraints
	Specification of restraints
	Specification of pseudo atoms
	Excluded pairs
	Rigid bodies
	Symmetry restraints

	MODELLER command reference
	Key for command descriptions
	The Environ class: MODELLER environment
	Environ() — create a new MODELLER environment
	Environ.io — default input parameters
	Environ.edat — default objective function parameters
	Environ.libs — MODELLER libraries
	Environ.schedule_scale — energy function scaling factors
	Environ.dendrogram() — clustering
	Environ.principal_components() — clustering
	Environ.system() — execute system command
	Environ.make_pssmdb() — Create a database of PSSMs given a list of profiles

	The EnergyData class: objective function parameters
	EnergyData() — create a new set of objective function parameters
	EnergyData.contact_shell — nonbond distance cutoff
	EnergyData.update_dynamic — nonbond recalculation threshold
	EnergyData.sphere_stdv — soft-sphere standard deviation
	EnergyData.dynamic_sphere — calculate soft-sphere overlap restraints
	EnergyData.dynamic_lennard — calculate Lennard-Jones restraints
	EnergyData.dynamic_coulomb — calculate Coulomb restraints
	EnergyData.dynamic_modeller — calculate non-bonded spline restraints
	EnergyData.excl_local — exclude certain local pairs of atoms
	EnergyData.radii_factor — scale atomic radii
	EnergyData.lennard_jones_switch — Lennard-Jones switching parameters
	EnergyData.coulomb_switch — Coulomb switching parameters
	EnergyData.relative_dielectric — relative dielectric
	EnergyData.covalent_cys — use disulfide bridges in residue distance
	EnergyData.nonbonded_sel_atoms — control interaction with picked atoms
	EnergyData.nlogn_use — select non-bond list generation algorithm
	EnergyData.max_nlogn_grid_cells — maximum number of grid cells for NlogN nonbond pairs routine
	EnergyData.energy_terms — user-defined global energy terms

	The IOData class: coordinate file input parameters
	IOData() — create a new input parameters object
	IOData.hetatm — whether to read HETATM records
	IOData.hydrogen — whether to read hydrogen atoms
	IOData.water — whether to read water molecules
	IOData.convert_modres — whether to convert modified residues
	IOData.hybrid36 — whether to read PDB files conformant with hybrid-36
	IOData.two_char_chain — whether to read PDB files with two-character chain IDs
	IOData.atom_files_directory — search path for coordinate files

	The Libraries class: stereochemical parameters and molecular topology
	Libraries.topology — topology library information
	Libraries.parameters — parameter library information
	Topology.append() — append residue topology library
	Topology.clear() — clear residue topology library
	Topology.read() — read residue topology library
	Parameters.append() — append parameters library
	Parameters.clear() — clear parameters library
	Parameters.read() — read parameters library
	Topology.make() — make a subset topology library
	Topology.submodel — select topology model type
	Topology.write() — write residue topology library

	The Model class: handling of atomic coordinates, and model building
	Model() — create a new 3D model
	Model.seq_id — sequence identity between the model and templates
	Model.resolution — resolution of protein structure
	Model.last_energy — last objective function value
	Model.remark — text remark(s)
	Model.restraints — all static restraints which act on the model
	Model.group_restraints — all restraints which act on atom groups
	Model.atoms — all atoms in the model
	Model.point() — return a point in Cartesian space
	Model.atom_range() — return a subset of all atoms
	Model.residue_range() — return a subset of all residues
	Model.get_insertions() — return a list of all insertions
	Model.get_deletions() — return a list of all deletions
	Model.loops() — return a list of all loops
	Model.read() — read coordinates for MODEL
	Model.build_sequence() — build model from a sequence of one-letter codes
	Model.write() — write MODEL
	Model.clear_topology() — clear model topology
	Model.generate_topology() — generate MODEL topology
	Model.make_valid_pdb_coordinates() — make coordinates fit in PDB format
	Model.write_psf() — write molecular topology to PSF file
	Model.patch() — patch MODEL topology
	Model.patch_ss_templates() — guess MODEL disulfides from templates
	Model.patch_ss() — guess MODEL disulfides from model structure
	Model.build() — build MODEL coordinates from topology
	Model.transfer_xyz() — copy templates' coordinates to MODEL
	Model.res_num_from() — residue numbers from MODEL2 to MODEL
	Model.rename_segments() — rename MODEL segments
	Model.to_iupac() — standardize certain dihedral angles
	Model.reorder_atoms() — standardize order of MODEL atoms
	Model.orient() — center and orient MODEL
	Model.write_data() — write derivative model data
	Model.make_region() — define a random surface patch of atoms
	Model.color() — color MODEL according to alignment
	Model.make_chains() — Fetch sequences from PDB file
	Model.saxs_intens() — Calculate SAXS intensity from model
	Model.saxs_pr() — Calculate P(r) of model
	Model.saxs_chifun() — Calculate SAXS score chi from model
	Model.assess_ga341() — assess a model with the GA341 method
	Model.assess_normalized_dope() — assess a model with the normalized DOPE method
	Model.get_normalized_dope_profile() — get per-residue normalized DOPE profile

	The Restraints class: static restraints
	Restraints.rigid_bodies — all rigid bodies
	Restraints.pseudo_atoms — all pseudo atoms
	Restraints.excluded_pairs — all excluded pairs
	Restraints.nonbonded_pairs — all nonbonded pairs
	Restraints.symmetry — all symmetry restraints
	Restraints.symmetry.report() — report violated symmetry restraints
	Restraints.make() — make restraints
	Restraints.make_distance() — make distance restraints
	Restraints.unpick_all() — unselect all restraints
	Restraints.clear() — delete all restraints
	Restraints.pick() — pick restraints for selected atoms
	Restraints.unpick_redundant() — unselect redundant restraints
	Restraints.remove_unpicked() — remove unselected restraints
	Restraints.condense() — remove unselected or redundant restraints
	Restraints.add() — add restraint
	Restraints.unpick() — unselect restraints
	Restraints.reindex() — renumber model restraints using another model
	Restraints.spline() — approximate restraints by splines
	Restraints.append() — read spatial restraints
	Restraints.write() — write spatial restraints

	The secondary_structure module: secondary structure restraints
	Alpha() — make an alpha-helix
	Strand() — make a beta-strand
	Sheet() — make a beta-sheet

	The Selection class: handling of sets of atom coordinates
	Selection() — create a new selection
	Selection.add() — add objects to selection
	Selection.extend_by_residue() — extend selection by residue
	Selection.by_residue() — make sure all residues are fully selected
	Selection.select_sphere() — select all atoms within radius
	Selection.only_mainchain() — select only mainchain atoms
	Selection.only_sidechain() — select only sidechain atoms
	Selection.only_atom_types() — select only atoms of given types
	Selection.only_residue_types() — select only atoms of given residue type
	Selection.only_std_residues() — select only standard residues
	Selection.only_no_topology() — select only residues without topology
	Selection.only_het_residues() — select only HETATM residues
	Selection.only_water_residues() — select only water residues
	Selection.only_defined() — select only atoms with defined coordinates
	Selection.write() — write selection coordinates to a file
	Selection.translate() — translate all coordinates
	Selection.rotate_origin() — rotate coordinates about origin
	Selection.rotate_mass_center() — rotate coordinates about mass center
	Selection.transform() — transform coordinates with a matrix
	Selection.mutate() — mutate selected residues
	Selection.randomize_xyz() — randomize selected coordinates
	Selection.superpose() — superpose model on selection given alignment
	Selection.rotate_dihedrals() — change dihedral angles
	Selection.unbuild() — undefine coordinates
	Selection.hot_atoms() — atoms violating restraints
	Selection.energy() — evaluate atom selection given restraints
	Selection.debug_function() — test code self-consistency
	Selection.assess_dope() — assess a model selection with the DOPE method
	Selection.assess_dopehr() — assess a model with the DOPE-HR method
	Selection.get_dope_profile() — get per-residue DOPE profile
	Selection.get_dopehr_profile() — get per-residue DOPE-HR profile
	Selection.assess() — assess a model selection

	The physical module: contributions to the objective function
	physical.Values() — create a new set of physical values

	The optimizers module: optimization of the model
	ConjugateGradients() — optimize atoms given restraints, with CG
	QuasiNewton() — optimize atoms with quasi-Newton minimization
	MolecularDynamics() — optimize atoms given restraints, with MD
	actions.WriteStructure() — write out the model coordinates
	actions.Trace() — write out optimization energies, etc
	actions.CHARMMTrajectory() — write out a CHARMM trajectory
	User-defined optimizers

	The Schedule class: variable target function optimization
	Schedule() — create a new schedule
	Schedule.make_for_model() — trim a schedule for a model
	Schedule.write() — write optimization schedule

	The GroupRestraints class: restraints on atom groups
	GroupRestraints() — create a new set of group restraints
	GroupRestraints.append() — read group restraint parameters

	The gbsa module: implicit solvation
	gbsa.Scorer() — create a new scorer to evaluate GB/SA energies

	SOAP potentials
	soap_loop.Scorer() — create a new scorer to evaluate SOAP-Loop energies
	soap_peptide.Scorer() — create a new scorer to evaluate SOAP-Peptide energies
	soap_pp.PairScorer() — create a new scorer to evaluate SOAP-PP pairwise energies
	soap_pp.AtomScorer() — create a new scorer to evaluate SOAP-PP atomistic energies
	soap_pp.Assessor() — assess with all components of the SOAP-PP score
	soap_protein_od.Scorer() — create a new scorer to evaluate SOAP-Protein-OD energies

	The Alignment class: comparison of sequences and structures
	Alignment() — create a new alignment
	Alignment.comments — alignment file comments
	Alignment.positions — list of residue-residue alignment positions (including gaps)
	Alignment.append() — read sequences and/or their alignment
	Alignment.clear() — delete all sequences from the alignment
	Alignment.read_one() — read sequences one by one from a file
	Alignment.check_structure_structure() — check template structure superpositions
	Alignment.check_sequence_structure() — check sequence/structure alignment for sanity
	Alignment.check() — check alignment for modeling
	Alignment.compare_with() — compare two alignments
	Alignment.append_model() — copy model sequence and coordinates to alignment
	Alignment.append_sequence() — add a sequence from one-letter codes
	Alignment.append_profile() — add profile sequences to the alignment
	Alignment.write() — write sequences and/or their alignment
	Alignment.edit() — edit overhangs in alignment
	Alignment.describe() — describe proteins
	Alignment.id_table() — calculate percentage sequence identities
	Alignment.compare_sequences() — compare sequences in alignment
	Alignment.align() — align two (blocks of) sequences
	Alignment.align2d() — align sequences with structures
	Alignment.malign() — align two or more sequences
	Alignment.consensus() — consensus sequence alignment
	Alignment.compare_structures() — compare 3D structures given alignment
	Alignment.align3d() — align two structures
	Alignment.malign3d() — align two or more structures
	Alignment.salign() — align two or more sequences/structures of proteins
	Alignment.get_suboptimals() — parse suboptimal alignments file
	Alignment.to_profile() — convert alignment to profile format
	Alignment.segment_matching() — align segments

	The Sequence class: a single sequence within an alignment
	Sequence.range — residue range
	Sequence.code — alignment code
	Sequence.atom_file — PDB file name
	Sequence.source — source organism
	Sequence.name — protein name
	Sequence.prottyp — protein sequence type
	Sequence.pdb_accession — PDB accession code
	Sequence.resolution — structure resolution
	Sequence.rfactor — R factor
	Sequence.residues — list of all residues in the sequence
	Sequence.chains — list of all chains in the sequence
	Sequence.transfer_res_prop() — transfer residue properties
	Sequence.get_num_equiv() — get number of equivalences
	Sequence.get_sequence_identity() — get sequence identity

	The Structure class: a template structure within an alignment
	Structure.write() — write out PDB file
	Structure.reread() — reread coordinates from the atom file
	Structure.read() — read coordinates from a PDB file

	The Chain class: a single chain in a model or alignment
	Chain.name — chain ID
	Chain.residues — all residues in the chain
	Chain.atoms — all atoms in the chain
	Chain.filter() — check if this chain passes all criteria
	Chain.write() — write out chain sequence to an alignment file
	Chain.atom_file_and_code() — get suitable names for this chain
	Chain.join() — join other chain(s) onto this one

	The Residue class: a single residue in a model or alignment
	Residue.name — internal (CHARMM) residue type name
	Residue.pdb_name — PDB (IUPAC) type name
	Residue.code — One-letter residue type code
	Residue.hetatm — HETATM indicator
	Residue.index — internal integer index
	Residue.num — PDB-style residue number plus insertion code
	Residue.intnum — PDB-style residue number
	Residue.inscode — PDB-style residue insertion code
	Residue.curvature — Mainchain curvature
	Residue.atoms — all atoms in the residue
	Residue.chain — chain object
	Residue.phi — phi dihedral angle
	Residue.psi — psi dihedral angle
	Residue.omega — omega dihedral angle
	Residue.alpha — alpha dihedral angle
	Residue.chi1 — chi1 dihedral angle
	Residue.chi2 — chi2 dihedral angle
	Residue.chi3 — chi3 dihedral angle
	Residue.chi4 — chi4 dihedral angle
	Residue.chi5 — chi5 dihedral angle
	Residue.get_aligned_residue() — get aligned residue in another sequence
	Residue.add_leading_gaps() — add gap(s) before this residue
	Residue.add_trailing_gaps() — add gap(s) after this residue
	Residue.remove_leading_gaps() — remove gap(s) before this residue
	Residue.remove_trailing_gaps() — remove gap(s) after this residue
	Residue.get_leading_gaps() — get number of gaps before this residue
	Residue.get_trailing_gaps() — get number of gaps after this residue

	The Dihedral class: a single dihedral in a model or alignment
	Dihedral.value — current value in degrees
	Dihedral.atoms — atoms defining the angle
	Dihedral.dihclass — integer dihedral class

	The Point class: a point in Cartesian space
	Point.x — x coordinate
	Point.select_sphere() — select all atoms within radius

	The Atom class: a single atom in a model or structure
	Atom.dvx — objective function derivative
	Atom.vx — x component of velocity
	Atom.biso — isotropic temperature factor
	Atom.accessibility — atomic accessibility
	Atom.occ — occupancy
	Atom.charge — electrostatic charge
	Atom.mass — mass
	Atom.name — PDB name
	Atom.type — CHARMM atom type
	Atom.residue — residue object
	Atom.get_equivalent_atom() — get equivalent atom in another residue

	The AtomType class: a CHARMM atom type
	AtomType.name — CHARMM name
	AtomType.mass — atomic mass
	AtomType.element — element

	The EnergyProfile class: a per-residue energy profile
	EnergyProfile.min_rms — minimal RMS violation
	EnergyProfile.heavy_rms — heavy RMS violation
	EnergyProfile.get_normalized() — get a normalized energy profile
	EnergyProfile.get_smoothed() — get a smoothed energy profile
	EnergyProfile.write_to_file() — write to file

	The Profile class: using sequence profiles
	Profile() — create a new profile
	Profile.read() — read a profile of a sequence
	Profile.write() — write a profile
	Profile.to_alignment() — profile to alignment
	Profile.scan() — Compare a target profile against a database of profiles
	Profile.build() — Build a profile for a given sequence or alignment
	PSSMDB() — create a new PSSM database
	PSSMDB.read() — read a PSSM database from a file

	The SequenceDB class: using sequence databases
	SequenceDB() — create a new sequence database
	SequenceDB.read() — read a database of sequences
	SequenceDB.close() — close an open database
	SequenceDB.write() — write a database of sequences
	SequenceDB.convert() — convert a database to binary format
	SequenceDB.search() — search for similar sequences
	SequenceDB.filter() — cluster sequences by sequence-identity

	The Density class: handling electron microscopy density data
	Density() — create a new density map
	Density.resolution — Map resolution
	Density.sigma_factor — Sigma factor
	Density.voxel_size — Map voxel size
	Density.px — Origin of the map
	Density.py — Origin of the map
	Density.pz — Origin of the map
	Density.grid — Density values
	Density.read() — read an EM (electron microscopy) density map file
	Density.grid_search() — dock a structure into an EM (electron microscopy) density map

	The SAXSData class: using small-angle X-ray (SAXS) data
	SAXSData() — create a new SAXSData structure
	SAXSData.ini_saxs() — Initialization of SAXS data
	SAXSData.saxs_read() — Read in SAXS data
	SAXSData.saxs_pr_read() — Read in P(r) data

	The info object: obtaining information about the MODELLER build
	info.version — the full MODELLER version number
	info.version_info — the version number, as a tuple
	info.build_date — the date this binary was built
	info.exe_type — the executable type of this binary
	info.debug — this binary's debug flag
	info.bindir — MODELLER binary directory
	info.time_mark() — print current date, time, and CPU time
	info.jobname — name of the current job

	The log object: controlling the amount of output
	log.level() — Set all log output levels
	log.none() — display no log output
	log.minimal() — display minimal log output
	log.verbose() — display verbose log output
	log.very_verbose() — display verbose log output, and dynamic memory information

	The modfile module: handling of files
	modfile.default() — generate an `automatic' filename
	modfile.delete() — delete a file
	modfile.inquire() — check if file exists
	modfile.File() — open a handle to a MODELLER file

	The scripts module: utility scripts
	cispeptide() — creates cis-peptide stereochemical restraints
	complete_pdb() — read a PDB, mmCIF, or BinaryCIF file, and fill in any missing atoms

	The salign module: high-level usage of SALIGN
	iterative_structural_align() — obtain the best structural alignment

	Parallel job support
	Job() — create a new parallel job
	SGEPEJob() — create a job using all Sun GridEngine (SGE) worker processes
	SGEQsubJob() — create a job which can be expanded with Sun GridEngine 'qsub'
	Job.worker_startup_commands — Worker startup commands
	Job.queue_task() — submit a task to run within the job
	Job.run_all_tasks() — run all queued tasks, and return results
	Job.yield_tasks_unordered() — run all queued tasks, and yield unordered results
	Job.start() — start all workers for message-passing
	Communicator.send_data() — send data
	Communicator.get_data() — get data
	Worker.run_cmd() — run a command on the worker
	LocalWorker() — create a worker running on the local machine
	SGEPEWorker() — create a worker running on a Sun GridEngine parallel environment worker node
	SGEQsubWorker() — create a 'qsub' worker running on a Sun GridEngine node
	SSHWorker() — create a worker on a remote host accessed via ssh

	MODELLER low-level programming
	User-defined features and restraint forms
	User-defined feature types
	User-defined restraint forms
	User-defined energy terms

	MODELLER programming interface (API)

	Methods
	Dynamic programming for sequence and structure comparison and searching
	Pairwise comparison
	Variable gap penalty
	Local versus global alignment
	Similarity versus distance scores
	Multiple comparisons

	Optimization of the objective function by MODELLER
	Function
	Optimizers

	Equations used in the derivation of the molecular pdf
	Features and their derivatives
	Restraints and their derivatives

	Flowchart of comparative modeling by MODELLER
	Loop modeling method

	File formats
	Alignment file (PIR)
	Restraints file
	Restraints
	Excluded pairs
	Pseudo atoms
	Symmetry restraints
	Rigid bodies

	Profile file
	Binary files

	Converting TOP scripts from old MODELLER versions
	Running old scripts unchanged
	Converting TOP scripts to Python
	TOP commands and variables
	TOP models and alignments
	TOP to Python correspondence

