
Hi Josh, from a very superficial look, your code to write the RMF files seems fine - do you get an output RMF file? Could you load it in Chimera?
On Tue, Jul 1, 2014 at 2:40 AM, Josh Bullock jma.bullock@gmail.com wrote:
> Hello, > > I'm relatively new to all this so please let me know if i'm making any > obvious errors ... > > Essentially all i'm trying to do is generate an ensemble of models made > from four subunits - constrained by MS connectivity restraints. The models > get scored but nothing seems to write to the pymol file. Ideally i'd like > to write to an .rmf but i haven't worked that one out either ... > > Is this a reasonable way to go about my problem ? > > Many thanks, > > Josh > > ------------------------------------------- > > import IMP > import IMP.atom > import IMP.rmf > import inspect > import IMP.container > import IMP.display > import IMP.statistics > #import IMP.example > import sys, math, os, optparse > import RMF > > from optparse import OptionParser > > > # Convert the arguments into strings and number > Firstpdb = str(sys.argv[1]) > Secondpdb = str(sys.argv[2]) > Thirdpdb = str(sys.argv[3]) > Fourthpdb = str(sys.argv[4]) > models = float(sys.argv[5]) > > #***************************************** > > # the spring constant to use, it doesnt really matter > k=100 > # the target resolution for the representation, this is used to specify > how detailed > # the representation used should be > resolution=300 > # the box to perform everything > bb=IMP.algebra.BoundingBox3D(IMP.algebra.Vector3D(0,0,0), > IMP.algebra.Vector3D(300, 300, 300)) > > > # this function creates the molecular hierarchies for the various involved > proteins > def create_representation(): > m= IMP.Model() > all=IMP.atom.Hierarchy.setup_particle(IMP.Particle(m)) > all.set_name("the universe") > # create a protein, represented as a set of connected balls of > appropriate > # radii and number, chose by the resolution parameter and the number of > # amino acids. > > def create_protein_from_pdbs(name, files): > > def create_from_pdb(file): > sls=IMP.SetLogState(IMP.NONE) > datadir = os.getcwd() > print datadir > t=IMP.atom.read_pdb( datadir+'/' + file, m, > IMP.atom.ATOMPDBSelector()) > del sls > #IMP.atom.show_molecular_hierarchy(t) > c=IMP.atom.Chain(IMP.atom.get_by_type(t, > IMP.atom.CHAIN_TYPE)[0]) > if c.get_number_of_children()==0: > IMP.atom.show_molecular_hierarchy(t) > # there is no reason to use all atoms, just approximate the > pdb shape instead > s=IMP.atom.create_simplified_along_backbone(c, > resolution/300.0) > IMP.atom.destroy(t) > # make the simplified structure rigid > rb=IMP.atom.create_rigid_body(s) > # rb=IMP.atom.create_rigid_body(c) > rb.set_coordinates_are_optimized(True) > return s > # return c > > h= create_from_pdb(files[0]) > h.set_name(name) > all.add_child(h) > > create_protein_from_pdbs("A", [Firstpdb]) > create_protein_from_pdbs("B", [Secondpdb]) > create_protein_from_pdbs("C", [Thirdpdb]) > create_protein_from_pdbs("D", [Fourthpdb]) > #create_protein_from_pdbs("C", ["rpt3_imp.pdb"]) > return (m, all) > > # create the needed restraints and add them to the model > > def create_restraints(m, all): > def add_connectivity_restraint(s): > > tr= IMP.core.TableRefiner() > rps=[] > for sc in s: > ps= sc.get_selected_particles() > rps.append(ps[0]) > tr.add_particle(ps[0], ps) > > # duplicate the IMP.atom.create_connectivity_restraint > functionality > > score= > IMP.core.KClosePairsPairScore(IMP.core.HarmonicSphereDistancePairScore(0,1),tr) > > r= IMP.core.MSConnectivityRestraint(m,score) > > iA = r.add_type([rps[0]]) > iB = r.add_type([rps[1]]) > iC = r.add_type([rps[2]]) > iD = r.add_type([rps[3]]) > n1 = r.add_composite([iA, iB, iC, iD]) > n2 = r.add_composite([iA, iB], n1) > n3 = r.add_composite([iC, iD], n1) > n4 = r.add_composite([iB, iC, iD], n1) > > m.add_restraint(r) > > evr=IMP.atom.create_excluded_volume_restraint([all]) > m.add_restraint(evr) > # a Selection allows for natural specification of what the restraints > act on > S= IMP.atom.Selection > sA=S(hierarchy=all, molecule="A") > sB=S(hierarchy=all, molecule="B") > sC=S(hierarchy=all, molecule="C") > sD=S(hierarchy=all, molecule="D") > add_connectivity_restraint([sA, sB, sC, sD]) > > > # find acceptable conformations of the model > def get_conformations(m): > sampler= IMP.core.MCCGSampler(m) > sampler.set_bounding_box(bb) > # magic numbers, experiment with them and make them large enough for > things to work > sampler.set_number_of_conjugate_gradient_steps(100) > sampler.set_number_of_monte_carlo_steps(20) > sampler.set_number_of_attempts(models) > # We don't care to see the output from the sampler > sampler.set_log_level(IMP.SILENT) > # return the IMP.ConfigurationSet storing all the found configurations > that > # meet the various restraint maximum scores. > cs= sampler.create_sample() > return cs > > > # cluster the conformations and write them to a file > def analyze_conformations(cs, all, gs): > # we want to cluster the configurations to make them easier to > understand > # in the case, the clustering is pretty meaningless > embed= IMP.statistics.ConfigurationSetXYZEmbedding(cs, > > IMP.container.ListSingletonContainer(IMP.atom.get_leaves(all)), True) > cluster= IMP.statistics.create_lloyds_kmeans(embed, 10, 10000) > # dump each cluster center to a file so it can be viewed. > for i in range(cluster.get_number_of_clusters()): > center= cluster.get_cluster_center(i) > cs.load_configuration(i) > w= IMP.display.PymolWriter("cluster.%d.pym"%i) > for g in gs: > w.add_geometry(g) > > > > #****************************************************************************************** > # now do the actual work > > (m,all)= create_representation() > IMP.atom.show_molecular_hierarchy(all) > create_restraints(m, all) > > # in order to display the results, we need something that maps the > particles onto > # geometric objets. The IMP.display.Geometry objects do this mapping. > # IMP.display.XYZRGeometry map an IMP.core.XYZR particle onto a sphere > gs=[] > for i in range(all.get_number_of_children()): > color= IMP.display.get_display_color(i) > n= all.get_child(i) > name= n.get_name() > g= IMP.atom.HierarchyGeometry(n) > g.set_color(color) > gs.append(g) > > cs= get_conformations(m) > > print "found", cs.get_number_of_configurations(), "solutions" > > ListScores = [] > for i in range(0, cs.get_number_of_configurations()): > cs.load_configuration(i) > # print the configuration > print "solution number: ",i,"scored :", m.evaluate(False) > ListScores.append(m.evaluate(False)) > > f1 = open("out_scores.csv", "w") > f1.write("\n".join(map(lambda x: str(x), ListScores))) > f1.close() > > # for each of the configuration, dump it to a file to view in pymol > for i in range(0, cs.get_number_of_configurations()): > JOSH = cs.load_configuration(i) > S= IMP.atom.Selection > h= IMP.atom.Hierarchy.get_children(cs) > tfn = IMP.create_temporary_file_name("josh%d"%i, ".rmf") > rh = RMF.create_rmf_file(tfn) > > # add the hierarchy to the file > IMP.rmf.add_hierarchies(rh, h) > > # add the current configuration to the file as frame 0 > IMP.rmf.save_frame(rh) > > for g in gs: > w.add_geometry(g) > > analyze_conformations(cs, all, gs) > > > _______________________________________________ > IMP-users mailing list > IMP-users@salilab.org > https://salilab.org/mailman/listinfo/imp-users > >