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Abstract
Quaternions are an important tool to describe the orientation of a molecule. This paper considers the use of quaternions in matching two

conformations of a molecule, in interpolating rotations, in performing statistics on orientational data, in the random sampling of rotations, and in

establishing grids in orientation space. These examples show that many of the rotational problems that arise in molecular modeling may be handled

simply and efficiently using quaternions.
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1. Introduction

Quaternions were introduced in the mid-nineteenth century

by Hamilton [1,2] as an extension of complex numbers and as a

tool for manipulating 3-dimensional vectors. Indeed Maxwell

used them to introduce vectors in his exposition of electro-

magnetic theory ([3], §10–11). However, unlike complex

numbers which occupy a central role in the development of

algebra, quaternions found no similar place in mathematics

and, with the introduction of modern vector notation by Gibbs

[4], quaternions fell out of favor by the end of the nineteenth

century. Nevertheless, quaternions excel as a way of

representing rotations of objects in 3-dimensional space. They

are economical to work with (both in terms of storage and

computation); but more importantly they offer a clean

conceptual framework which allow several problems involving

rotations to be easily solved.

Basic quaternion algebra is well covered in Hamilton’s

papers [1,2], which are both accessible and readable. These

papers may be supplemented with a wealth of on-line resources

[5,6]. Many authors over the past 20 years have ‘‘rediscovered’’

the application of quaternions to rotations and it is with some

trepidation that this author inflicts another paper on the subject

on the scientific community. However, within the molecular
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modeling community, quaternions are quite narrowly applied.

This paper therefore briefly reviews quaternion algebra and

then describes their applications to a broad range of rotational

problems in molecular modeling. Much of this material has

appeared before—but often scattered about in journals for fields

unrelated to molecular modeling. I have, therefore, endeavored

to organize the material, to generalize it, and to present it with a

consistent notation, with the hope this affords a deeper

appreciation of the power of quaternions in describing rotations

and encourages their wider adoption in molecular modeling.

The outline of this paper is as follows. After introducing

quaternions and their use in describing rotations, we tackle

various applications. First we review the quaternion method for

computing the least-squares fit of two conformations of the

same molecule. We also see how to include molecular

inversions and discuss why the least-squares fit is a poor

choice to describe the orientation of a flexible molecule. We

next show how to interpolate smoothly between two orienta-

tions and that this corresponds to rotating the molecule at

constant angular velocity. In order to carry out statistics on

orientational data, we give a robust definition of the mean

orientation showing how to transform the deviations from the

mean to 3-dimensional space so that familiar statistical tools

may be employed. In Monte Carlo applications, we need to be

able to select a random orientation uniformly; we show that this

is trivially accomplished in quaternion space and we also

consider the problem of making random incremental rotations.

Finally, it is frequently useful to impose a grid on orientation
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space and we illustrate how this may be done with applications

to quadrature and searching.

2. Quaternions

The original notation for quaternions [1] paralleled the

convention for complex numbers

q ¼ q0uþ q1iþ q2jþ q3k;

which obey the conventional algebraic rule for addition and

multiplication by scalars (real numbers) and which obey an

associative non-commutative rule for multiplication where u is

the identity element and

i2 ¼ j2 ¼ k2 ¼ �u; ij ¼ �ji ¼ k; jk ¼ �kj ¼ i;

ki ¼ �ik ¼ j:

It is frequently useful to regard quaternions as an ordered set of

4 real quantities which we write as

q ¼ ½q0; q1; q2; q3�; (1)

or as a combination of a scalar and a vector

q ¼ ½q0; q�; (2)

where q ¼ ½q1; q2; q3�. A ‘‘scalar’’ quaternion has zero vector

part and we shall write this as ½q0; 0� ¼ q0u ¼ q0. A ‘‘pure’’

quaternion has zero scalar part ½0; q�.
In the scalar–vector representation, multiplication becomes

pq ¼ ½ p0q0 � p � q; p0qþ q0pþ p� q�;

where ‘‘�’’ and ‘‘�’’ are the vector dot and cross products. The

conjugate of a quaternion is given by

q̄ ¼ ½q0;�q�;

the squared norm of a quaternion is

jqj2 ¼ qq̄ ¼ q2
0 þ q2

1 þ q2
2 þ q2

3;

and its inverse is

q�1 ¼ q̄=jqj2:

Quaternions with jqj ¼ 1 are called unit quaternions, for

which we have q�1 ¼ q̄.

The quaternion q can also be represented as a 2� 2 complex

matrix,

q0 þ iq1 q2 þ iq3

�q2 þ iq3 q0 � iq1

� �
;

or as a 4� 4 real matrix,

QðqÞ ¼

q0 q1 q2 q3

�q1 q0 �q3 q2

�q2 q3 q0 �q1

�q3 �q2 q1 q0

0
BB@

1
CCA; (3)

in these forms, quaternion multiplication becomes matrix

multiplication.
The notation we adopt here is to use light-face italics for scalar

quantities, bold roman for 3-dimensional vectors and 3� 3

matrices, bold sans serif for quaternions and 4� 4 matrices.

Quaternion multiplication is indicated by pq, while ‘‘�’’ is used to

indicate matrix-vector and vector–vector (including quaternion-

quaternion) contractions and in this context q and v are treated as

column vectors. Thus, we may write jqj2 ¼ qT � q. We also find

that pq ¼ pT �QðqÞ, with Q given by Eq. (3). Consistent with

Eqs. (1) and (2), we shall number quaternion indices starting at 0

and vector indices from 1.

3. Rotations

The chief application of quaternions to molecular modeling

lies in their use to represent rotations. Consider a unit

quaternion

q ¼ ½cos ðu=2Þ; vsin ðu=2Þ�; (4)

where jvj ¼ 1, and define an operator Rq on 3-dimensional

vectors by

½0;RqðxÞ� ¼ q ½0; x� q̄: (5)

Multiplying out the quaternion product, we find

RqðxÞ ¼ RðqÞ � x;

where RðqÞ is the tensor

RðqÞ ¼ ðq2
0 � jqj

2ÞIþ 2qqþ 2q0I� q (6)

¼ vvþ cos uðI� vvÞ þ sin u I� v; (7)

where aa is the parallel projector [ ðaaÞ � b ¼ ða � bÞa] and I�
a is the cross operator [ ðI� aÞ � b ¼ a� b] ([4], §113). Eq. (7)

is the conventional tensor representation for a right-handed

rotation of u about an axis v through the origin ([4], §126).

Eq. (6) may be written in component form as

RðqÞ ¼
1� 2q2

2 � 2q2
3 2q1q2 � 2q0q3 2q1q3 þ 2q0q2

2q2q1 þ 2q0q3 1� 2q2
3 � 2q2

1 2q2q3 � 2q0q1

2q3q1 � 2q0q2 2q3q2 þ 2q0q1 1� 2q2
1 � 2q2

2

0
BB@

1
CCA:

(8)

The definition, Eq. (5), gives RpðRqðxÞÞ ¼ RpqðxÞ, so that

pq corresponds to composing rotations (with the rotation by q
performed first). We also find that Rq ¼ R�q; i.e., q and �q
give the same rotation—changing the sign of q is equivalent to

increasing u by 2p in Eq. (4). Unit quaternions satisfy q2
0 þ

q2
1 þ q2

2 þ q2
3 ¼ 1 and the quaternion representation of rotations

are as points on a hypersphere S3 with opposite points

identified. For future reference, we note that the (3-dimen-

sional) area of S3 is 2p2.

Because q and �q give the same rotation, some care needs

to be taken when comparing two orientations represented by qa

and qb. The rotation, q ¼ qbq̄a, moves from qa to qb. When

inverting Eq. (4) to determine the rotation angle u between the

two orientations, we should, if necessary, change the sign of q
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to ensure that q0� 0, so that u2 ½0;p�. A simple metric for

closeness is given by cos ðu=2Þ ¼ jqT
a � qbj.

Describing rotations with quaternions has a number of

benefits. They offer a compact representation of rotations.

Compared to Euler angles, they are free of singularities.

Rotations may be composed more efficiently using quaternions

than by matrix multiplication. Also in contrast to rotation

matrices, it is easy to maintain a quaternion’s unit normal-

ization (merely divide it by jqj). However the chief benefit is

that the representation of a rotation as point on S3 allows us to

derive many important results concerning rotations in a simple

coordinate-free way.

There is one application where the matrix representation of

rotations is more efficient that the quaternion representation. If

we wish to apply the same rotation to many points, then we

should form the rotation matrix using Eq. (8) and transform the

points by matrix multiplication.

The conventional representation for rotations that is most

closely allied to quaternions is the axis–angle representation,

where the rotation is given by a vector s ¼ uv which denotes a

rotation of u ¼ jsj about an axis v ¼ s=jsj. It is useful to have an

analytic relation between the quaternion and axis–angle

representations and this is provided by the quaternion

exponential [1],

exp ð½0; s=2�Þ ¼ q; (9)

where q is given by Eq. (4), This definition of the exponential

follows from its series expansion. Similarly the inverse opera-

tion is given by the quaternion logarithm

ln q ¼ ½0; s=2þ 2pnv�; (10)

where n is an integer.

It is useful here to make a distinction between ‘‘orientation’’

and ‘‘rotation’’. We imagine that our molecule has some

arbitrary but definite reference state. We apply a rotation and a

translation (jointly referred to as a ‘‘displacement’’) to this

reference state and so bring the molecule to a new orientation

and position (jointly referred to as a ‘‘configuration’’).

4. Least-squares fit

Given two conformations of the same molecule, it is often

useful to be able to determine how close the conformations are.

In order to do this, we can rigidly move one conformation so

that it nearly coincides with the other and then determine the

difference in the positions of the corresponding atoms. Thus, if

we are given two sets of atomic positions fxkg and fykg with

k2 ½1;N� together with a set of atomic ‘‘weights’’ fwkg, we

wish to determine the (rigid) displacement T which minimizes

E ¼ 1

W

X
k

wkjyk � TðxkÞj2; (11)

where W ¼
P

kwk. Here wk is merely a statistical weight of an

atom—it is not necessarily related to the atomic mass. The two

sets of atomic positions are ordered which presumes that we can

identify corresponding atoms. (This is not necessarily a simple
matter, if, for example, we are dealing with a molecule with

several identical branches.) The displacement T ¼ ðq; dÞ may

be expressed as a rotation about an axis through the origin

followed by a translation, i.e., TðxÞ ¼ RqðxÞ þ d.

This problem has been considered by many authors and a

review of various approaches is given by Flower [7]. Using

quaternions to describe the rotation leads to an elegant and

robust solution. An early use of quaternions in this context is to

solve the problem formulated by Wahba [8,9], the determina-

tion of the attitude of a spacecraft given the directions of several

objects relative to the craft. The resulting ‘‘q-method’’ is

described by Keat ([10], §A.3) and by Lerner ([11], §12.2.3)

who both credit the invention of the method to Paul B.

Davenport (1968). The generalization to matching points (as

opposed to directions) was considered by Faugeras and Hebert

[12] who independently found the same method for determin-

ing the orientation. Their method was subsequently redis-

covered by Horn [13], by Diamond [14], and by Kearsley [15].

The derivation of Faugeras and Hebert is one of the clearest,

and we briefly summarize it here including the straightforward

generalization of including arbitrary weights wk.

If we demand that the variation of E with respect to d vanish,

we find that

d ¼ hyi � RqðhxiÞ; (12)

where h. . .i denotes the sample average,

hXi ¼ 1

W

X
k

wkXk: (13)

Eq. (11) may now be written as

E ¼ 1

W

X
k

wkjy0k � Rqðx0kÞj
2; (14)

where x0k ¼ xk � hxi and y0k ¼ yk � hyi. Using Eq. (5),

Eq. (14), becomes

E ¼ 1

W

X
k

wk

����½0; y0k� � q ½0; x0k� q̄
����
2

: (15)

Because, the norm of a quaternion is unchanged on multiplying

it by a unit quaternion, we may right-multiply the kernel of

Eq. (15) by q to give

E ¼ 1

W

X
k

wk

����½0; y0k�q� q ½0; x0k�
����
2

: (16)

We need to minimize Eq. (16) subject to the constraint jqj ¼ 1.

Because the kernel is linear in q, it can be written as

½0; y0k�q� q ½0; x0k� ¼ Ak � q; (17)

where Ak is a 4� 4 skew matrix

Ak ¼ Aðy0k þ x0k; y
0
k � x0kÞ;
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with

Aða; bÞ ¼ 0 �bT

b I� a

� �
¼

0 �b1 �b2 �b3

b1 0 �a3 a2

b2 a3 0 �a1

b3 �a2 a1 0

0
BB@

1
CCA:

Substituting this into Eq. (16), we obtain

E ¼ 1

W

X
k

wk qT � AT
k � Ak � q ¼ qT � B � q; (18)

where B ¼ hAT
k � Aki is a 4� 4 symmetric matrix which has

real eigenvalues, 0 � l0 � l1 � l2 � l3. Setting q to the

eigenvector corresponding to l0 gives the minimum value

for E ¼ l0.

In summary, the best fit is achieved by subtracting the mean

positions from the original sets of points to give fx0kg and fy0kg,
forming the matrices Ak and B, and determining the minimum

eigenvalue l0 of B. The optimal rotation is given by setting q to

the corresponding eigenvector of B and the optimal translation

is found from Eq. (12). The mean squared error for this fit is l0.

This procedure has two attractive features. The rotation

obtained is a proper rotation (without an inversion); this is

usually the desired result. Secondly, degenerate molecules are

treated satisfactorily. For example if one or both of the sets fxkg
and fykg is collinear, then the best fit is no longer unique. The

result will be that there will be multiple minimum eigenvalues

of B with distinct eigenvectors. The general solution is obtained

by setting q to a linear combination of these eigenvectors. The

method does require finding the eigenvalues and eigenvectors

of a 4� 4 matrix. However there are many numerical libraries

[16–18] which solve such problems and the results are accurate

to round-off for small symmetric matrices such as B. A fast

method of determining just the required eigenvector and

associated eigenvalue in order to determine the attitude of a

spacecraft is given in ([19], §III). However, in applications to

molecular modeling, it is probably preferable merely to invoke

a library eigenvector routine.

Horn [13] considered including a scaling in the transforma-

tion T in Eq. (11). This is quite easily accommodated. However

there seems little need to include such an effect in molecular

modeling.

Diamond [20] considers the case where inversions are

allowed. This is easily achieved by substituting �x0k for x0k in

Eq. (14). Eq. (18) then involves a matrix B0 where

B0 ¼ 2hjx0j2 þ jy0j2iI� B: (19)

Consequently the rotation giving the best inverted fit is the

eigenvector with the greatest eigenvalue of B, l3. Because the

sum of the eigenvalues of B is its trace, 4hjx0j2 þ jy0j2i, we can

express the mean squared error for the inverted fit as
1
2
ðl0 þ l1 þ l2 � l3Þ. Thus, once the eigenvalues of B have

been computed we immediately determine whether the inverted

fit will be better than the proper fit.

Coutsias et al. [21] provide an interesting extension of this

method. Suppose the atomic positions fxkg represent a model

of a molecule which depends on a set of parameters faig, for
example, the torsion angles of a protein backbone. By

considering the gradient of E in parameter space @E=@ai, they

provide a method for determining the parameter values which

result in the best fit to a given crystal structure.

One other interesting consequence of the result for the best fit

is that the rotation is not a continuous function of the

configurations of the molecules. Let us suppose that fxkg gives

the position of the atoms in a molecule in some predefined

configuration and suppose that fykg gives the atom positions

during the course of a dynamical simulation of the molecule. If

the forces acting on the atoms are finite then yk is a C1 function

(twice differentiable). During the course of the deformation of

the molecule, B and its eigenvalues change. In the typical case,

the two smallest eigenvalues exchange roles and q switches from

one direction in R4 to an orthogonal direction. This results in the

orientation of the best fit changing discontinuously by 180�.
In modeling a flexible molecule, it is frequently useful to

separate the external degrees of freedom, namely position and

orientation, from the internal degrees of freedom. This allows,

for example, translational and rotational symmetry to the

system to be enforced and correlations between the motions of

atoms within a molecule to be studied. This begs the question of

how best to define the position and orientation of a molecule.

Taking the position to be the center of mass is often the obvious

choice. The position (so defined) evolves according to

Newton’s second law driven by the total force on the molecule.

It is not possible to keep track of the orientation in an analogous

fashion by integrating the total angular momentum, because

flexible bodies can change their orientation with zero angular

momentum—witness the ability of a cat always to land on its

feet. A possible definition of the orientation is the best fit

orientation to a reference conformation; i.e., we define oRðAÞ as

the best fit orientation, expressed as a quaternion, of the

molecule in conformation A relative to a reference conforma-

tion R. Here again this choice has the attractive feature that the

whole molecule is included in the definition. There are two

problems with this prescription. Firstly, the difference in

orientations between two conformations A and B depends, in

general, on the choice of reference conformation, namely

oRðBÞoRðAÞ 6¼oSðBÞoSðAÞ:

(This is easily demonstrated for simple triatomic molecules.)

Thus this definition of orientation entails a degree of ‘‘arbi-

trariness’’ absent in our definition of position. A second more

serious defect arises from the discussion in the previous para-

graph. Recovering the actual configuration of the molecule

from the orientation defined in this way is numerically unstable

(by a flip of 180�!) whenever the lowest eigenvalues cross. This

would also lead to large and discontinuous apparent internal

motions of the molecule with small changes in the atoms’ true

positions. A better choice would therefore be to make the fit to

some rigid (or nearly rigid) subcomponent of the molecule [22].

Although this still yields an arbitrary definition of orientation

(depending on the choice of reference subcomponent), the

resulting orientation varies continuously under continuous

deformations of the molecule. An extensive discussion of
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how to separate the orientation from the internal motions of a

flexible molecule is given by Littlejohn and Reinsch [23].

5. Interpolating rotations

The power of the quaternion representation of rotations is

evident when we consider the problem of interpolating between

two orientations of a molecule. (This application might arise in

the animation of a molecular simulation.) Suppose we wish to

interpolate between qa and qb. Because these quaternions and

their interpolants lie on the unit sphere S3, the shortest path will

be a great circle whose parametric equation is given by [24]

qðfÞ ¼ qa sin ðu � fÞ þ qb sin ðfÞ
sin ðuÞ ; (20)

where cos u ¼ qT
a � qb. In the computer animation community

this ‘‘spherical linear interpolation’’ operation is denoted by

Slerpðqa;qb; uÞ ¼ qðuuÞ [24]. As f is increased from 0 to 2p,

qðfÞ becomes successively qa, qb, �qa, �qb, and finally

returns to qa. During this operation the corresponding 3-dimen-

sional rotation has increased by 4p. If qT
a � qb� 0, then 0 �

f � u takes qðfÞ smoothly from qa to qb. If, on the other hand,

qT
a � qb < 0, then a shorter path is found with 0�f� u � p

which takes qðfÞ smoothly from qa to �qb.

Eq. (20) is derived using simple geometrical arguments

applied to S3 and the same result is obtained for the great-circle

interpolation for Sn. For S3, the result can also be expressed as

qðfÞ ¼ ðqbq̄aÞ
f=uqa:

This relation has the interpretation: rotate to qa and then rotate a

fraction f=u to the path from qa to qb. The operation qu is

defined by [1]

qu ¼ exp ðu ln qÞ:

In fact this interpolation scheme results in the molecule

undergoing rotation at constant angular velocity. In order to

show this, consider a body rotating at v about a unit axis v. The

evolution of the orientation q satisfies the differential equation

q̇ ¼ ½0; ðv=2Þv�q: (21)

This is easily solved (e.g., by using finite differences and

passing to the limit dt! 0) to give

qðtÞ ¼ exp ð½0; ðvt=2Þv�Þqð0Þ

¼ ½cos ðvt=2Þ; vsin ðvt=2Þ�qð0Þ;

which agrees with Eq. (20) with the substitutions f ¼ vt=2,

qa ¼ qð0Þ and qb ¼ ½0; v�qð0Þ.
If we wish to interpolate between two configurations of a

rigid molecule, we are free to specify a point, x0, in the

reference molecule which will move with constant velocity. If

the initial and final configurations are given by Ta ¼ ðqa; daÞ
and Tb ¼ ðqb; dbÞ, with qT

a � qb� 0, then the required inter-

polation is achieved by increasing u from 0 to 1 with the
orientation given by qðuuÞ and the translation given by

ðda þ Rqa
ðx0ÞÞð1� uÞ þ ðdb þ Rqb

ðx0ÞÞu� RqðuuÞðx0Þ:

6. Mean orientation

The mean of directional quantities has frequently presented

difficulties [25]. Let us assume we have N samples of some

directional quantity with weights wk for k2 ½1;N� andP
kwk ¼ W . In the case where the samples are angles (e.g.,

the dihedral angles of a molecular bond) or directions (e.g., the

orientations of a diatomic molecule), there is a well established

procedure ([25], §2.2.1, §9.2.1): express the directions as unit

vectors in R2 or R3, nk, and determine hni where we take the

sample average according to Eq. (13). Now the mean direction

is given by hhnii ¼ hni=jhnij, while 1� jhnij, a quantity lying

in ½0; 1�, is the ‘‘circular variance’’ ([25], §2.3.1) or ‘‘spherical

variance’’ ([25], §9.2.1). Here h. . .i is defined as a simple

weighted arithmetical average, Eq. (13), while hh. . .ii denotes

the physically relevant mean of a quantity.

This procedure cannot be directly applied to unit quaternions

used to represent rotations because of the indistinguishability of

	q. Instead, we view fqkg as axes ([25], §1.1, §9.1) in R4, and

define hhqii as the unit quaternion about which the weighted

moment of inertia of fqkg is minimum ([26], §3). Thus we wish

to minimize

L ¼ 1

W

X
k

wk qT
k � ðI� hhqiihhqii

TÞ � qk

¼ 1

W

X
k

wk hhqiiT � ðI� qkq
T
k Þ � hhqii

¼ hhqiiT � ðI� hqqTiÞ � hhqii:

The minimum value of L is given by the minimum eigenvalue

of I� hqqTi and hhqii is corresponding eigenvector. The

resulting L, which is a quantity lying in ½0; 3
4
�, then provides

a measure of the variance of the rotations. This definition of the

mean has a number of desirable properties: it is invariant when

the signs of the qk are changed; it is independent of the order of

the samples; and it transforms properly if the samples are

transformed.

This prescription can also be applied to determine the mean

direction of objects whose symmetry makes n and �n

indistinguishable (for example, the orientation of the diatomic

molecule N2).

Suppose we wish to determine the mean configuration of a

rigid molecule, i.e., the mean of fTk ¼ ðqk; dkÞg. We are free to

choose a point x0 in the reference molecule whose position in

the mean configuration coincides with its mean position.

(Compare this with the discussion of interpolating configura-

tions in the previous section.) A suitable definition for the mean

configuration is then

hhTii ¼ ðhhqii; hdi þ hRqðx0Þi � Rhhqiiðx0ÞÞ: (22)

Frequently, we need more precise information about the

distribution of configurations than its variance. We might need
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to know how much the rotation about different axes are

correlated or whether rotational and translational motions are

coupled. It is also desirable to be able to fit model distributions

to a set of samples. For these purposes, it is useful to be able to

map rotations onto R3 so that standard statistical tools can be

employed. We require that the mapping be measure preserving

(constant Jacobian) to simplify the use of the transformed

rotations.

We have already introduced the axis–angle representation of

rotations. We may make the restriction jsj � p and so map the

hemisphere q0� 0 of S3 onto a ball of radius p in R3.

Unfortunately, the mapping, Eq. (9), does not have constant

Jacobian. We can correct this by defining [27] a new ‘‘turn’’

vector u with the properties

u k s; (23a)

juj ¼
�
jsj � sin jsj

p

�1=3

: (23b)

This is an extension of the Lambert azimuthal equal-area

projection providing a measure-preserving mapping of the

hemisphere q0� 0 of S3 onto the unit ball B3. Eq. (23) is

well behaved at the boundary, juj ¼ 1; however on this

boundary antipodal points are identified. The inverse map-

ping has an infinite derivate at juj ¼
ffiffiffiffiffi
2n3
p

for integer n 6¼ 0

which corresponds to shells in u space which map to the

origin. This inverse of Eq. (23) is easily implemented via

Newton’s method supplemented by Taylor series at the origin

and at
ffiffiffiffiffi
2n3
p

.

This mapping was introduced [27] to allow distributions of

orientations to be fit using a mixture of Gaussians [28]. Given a

set of sample orientations fqkg, we compute the mean

orientation, hhqii. The deviations of the samples from the

mean are then given by the rotations fqkhhq̄iig and these are

mapped to a set of turns fukg. Because these are points in R3,

we may fit them with a 3-dimensional Gaussian with zero mean

and with covariance matrix huTui.
This procedure can be extended to fits of molecular

configurations. In this case, the deviations from the mean

configuration, Eq. (22), is mapped into a point in R6; the

resulting Gaussian fit will capture the correlation between the

translational and rotational degrees of freedom.

In closing this section, we mention an alternative way of

fitting quaternion orientational data with analytic functions,

namely in terms of spherical harmonics. The normal (3-

dimensional) spherical harmonics can be generalized to 4

(and higher) dimensions [29,30] and the orthogonality

relation allows the coefficients of the harmonics to be

computed simply. The 	q symmetry merely results in the

odd harmonics dropping out. However in typical molecular

interactions, the relative orientation of the molecules is

tightly constrained which means that a large number of

spherical harmonics will be needed to represent the

orientational distribution. For such applications, a represen-

tation in terms of localized functions, such as Gaussians, is

preferable.
7. Random orientation

In Monte Carlo simulations [31], it is sometimes necessary

to select a molecule with a random and uniform position and

orientation, for example, when attempting to insert a molecule

into a simulation box during a grand canonical simulation [32].

Choosing a random position is straightforward. However, we

need to be careful to select the random orientation uniformly or

else detailed balance will be violated (when balancing

insertions and deletions). One possibility is to choose a

random turn u in B3 and to convert this to a quaternion.

However, it is much simpler to sample directly in quaternion

space.

Let us first establish the requirement for ‘‘uniform’’

sampling of orientations. Composing 3-dimensional rotations

is carried out by the multiplication of unit quaternions; but we

know that pq ¼ pT �QðqÞ, where QðqÞ, given in Eq. (3), is

orthonormal if q is a unit quaternion. Thus 3-dimensional

rotations map into a rigid rotation of S3; a uniform density on

S3 is invariant to such rotations. It follows that the task of

sampling a random orientation reduces to picking a random unit

quaternion uniformly on S3.

Marsaglia [33] provides one prescription: select x1 and y1

uniformly in ð�1; 1Þ until s1 ¼ x2
1 þ y2

1 < 1; similarly, select x2

and y2 uniformly in ð�1; 1Þ until s2 ¼ x2
2 þ y2

2 < 1; then

q ¼ ½x1; y1; x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� s1Þ=s2

p
; y2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� s1Þ=s2

p
�

is uniformly distributed on S3.

A more transparent and symmetric method (which

generalizes to sampling points on Sn ([34], §7.1)) is to pick

4 normal deviates gi for i2 ½0; 4Þ and to set

p ¼ ½g0; g1; g2; g3�; q ¼ p=jpj:

Although this method is less efficient than Marsaglia’s, the

overall impact in the context of a molecular simulation is

probably tiny. Both of these methods return points uniformly

over the whole of S3 rather that over just one hemisphere. In

most applications, this is of no consequence.

Other representations of rotation yield more complex rules

for obtaining random orientations. For example, with Euler

angles, we would sample uniformly the first and third angles

and the cosine of the second angle. If the orientation is given in

axis–angle space, s, then the axis, s=jsj, should be chosen

uniformly on S2, and the rotation angle, jsj, should be sampled

from ½0;p� with probability ð2=pÞsin 2ðjsj=2Þ. Of course, this

simplifies when s is transformed to u space, Eq. (23), leading to

a uniform distribution in B3.

A related problem is selection of random rotational moves

for use in a Monte Carlo simulation [31]. This method requires

that detailed balance be satisfied, which, in the absence of

torque bias, means that the probability of selecting the new

orientation is symmetric under interchange of old and new

orientations. Because we are typically interested in small

changes in orientation, it is most convenient to select the

rotation in axis–angle space as exp ð½0; s�Þ and to set the new
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orientation

q0 ¼ exp ð½0; s�Þq;

where s is selected from an even distribution, pðsÞ ¼ pð�sÞ.
(This result follows because the Jacobian factor is even in s.)

Usually, we wish the choice of rotation axis to be isotropic, and

in that case we have pðsÞ ¼ pðjsjÞ. Thus we might select s

uniformly in a sphere of radius D. Rao et al. [35] select jsj
uniformly in ½0;D� (which results in a distribution which is

singular at the origin in s space). An attractive choice of

distribution is a 3-dimensional Gaussian

pðsÞ ¼
exp ð� 1

2
jsj2=D2Þ

ð2pÞ3=2
D3

:

Not only is this simple to sample from, but it allows torque bias

to be included in a simple manner. Torque bias is implemented

[35] by multiplying the a priori probability of selecting a move

by exp ðlb tT � sÞ, where b is the inverse temperature, l a

constant (usually taken to be 1
2
), and t is the torque on the

molecule. If the ‘‘starting’’ distribution is a Gaussian then the

torque bias factor merely shifts the Gaussian to give

pðsÞ ¼
exp ð� 1

2
js� lbD2tj2=D2Þ
ð2pÞ3=2

D3
:

This offers two simplifications over the original procedure

[35]: (a) it is trivial to sample from a shifted Gaussian and (b)

the acceptance probability, which involves the ratio of the

forward and reverse a priori probabilities, is also easy to

compute and, in particular, it does not require the evaluation

of a normalization factor for the distribution. Similar con-

siderations obviously apply to the application of force bias

for translational moves, as has been discussed by Rossky

et al. [36]. Indeed, in the case of moving molecules, we

would naturally perform a combined translational and orien-

tational move applying both force and torque bias simulta-

neously. There are often strong gradients in the forces in

molecular simulations and a direct application of force bias

in this case can lead to poor sampling because certain

transitions are effectively disallowed. In such cases, it is

prudent to limit the effect of the bias by limiting the shift in

the Gaussian, if necessary, to ensure that there a finite

probability (at least 5–10%, say) of the sampled move being

in the opposite direction to the force. This ensures that the

molecule can effectively explore configuration space because

small steps are always permitted and it provides a simpler

‘‘safety’’ mechanism than the distance scaling of l proposed

by Mezei [37].

Finally, some care needs to be taken to treat the possibility of

the orientation ‘‘wrapping’’ around. Suppose the sampled s has

jsj>p, then the resulting orientation is identical to the wrapped

one, s� 2ps=jsj. To ensure that detailed balance is maintained,

the acceptance probability should use the a priori probability

for the reverse move�s (rather than the negative of the wrapped

move). A simple expedient for avoiding this problem is simply

to reject any move with jsj>p.
8. Grids for orientation

In many contexts, it is important to be able to represent the

independent variables for a problem on a grid. It is therefore

useful to be able to map orientations onto a grid. Possible

applications are binning molecular data, implementing cavity

bias in orientation [38], performing systematic searching of

orientations (where the goal is to provide more regular coverage

of orientation space than is achieved by random sampling), and

performing integrals over orientation by numerical quadrature

[39]. Our goal is to provide a simple rule for covering

orientation space with a grid while ensuring that the grid

elements are approximately of equal volumes and are not

unduly distorted. Here again, representing the orientation as a

quaternion provides a reasonable solution.

Recall that unit quaternions lie on a hypersphere S3.

Positions on S3 can be determined by three angle-like

variables. However these are a poor basis for a grid because

of singularities in the resulting coordinate system. Instead let

imagine surrounding S3 by a tesseract (the 4-dimensional

analogue of the cube) of edge length 2. This consists of eight

cells which are 2� 2� 2 cubes tangent to S3. An exemplary

cell is given by p with p0 ¼ 1, j pi 6¼ 0j � 1. We need only

consider half of the cells of the tesseract because of the

identification of 	p. Thus we choose to consider the four cells

for which one of the components of p is þ1.

This then forms the basis for a cubical grid for orientation

space. This is attractive because cubical grids are simple to

index into; they are easy to refine; they have an metric factor

which is easy to compute, etc. The overall ‘‘wastefulness’’ of

this grids relative to a cubic grid within a domain of R3 is given

by the ratio of the volume of four cells of the tesseract (4� 23)

to the area (really a volume) of a hemisphere of S3, i.e.,

32=p2
 3:24. This might seem rather profligate. However, if

we managed to arrange the grid around the S3 without any

wastage, the grid edge would be reduced by a factor of onlyffiffiffiffiffiffiffiffiffi
3:243
p


 1:48.

Let us divide each of the cells of the tesseract into M3 grid

cubes (of side 2=M). These cubes can then be projected to S3 by

scaling p to a unit quaternion. This operation scales thevolume of

each of the grid cubes by jpj�4
—a factor of jpj�3

is due to scaling

a volume element linearly by jpj�1
and the last factor of jpj�1

arises from the distortion of the cube during this operation. The

maximum scaling occurs at the corners of the tesseract, e.g.,

p ¼ ½1; 1; 1; 1�, where jpj ¼ 2, so that range of volumes for the

grid elements is 16 with the maximum distortion being a factor of

2. Mapping between an arbitrary orientation q and a point in the

grid is then achieved as follows. We identify the component ql of

q which is largest in absolute value and set p ¼ q=ql, giving

pl ¼ 1 and pi 6¼ l 2 ½�1; 1�. The grid then consists of 4�M �
M �M elements. The resolution of the grid, given by the

maximum change in orientations between neighboring grid cells,

is approximately 4=M. (We need to multiply the grid cube edge

by 2 to obtain the equivalent rotation angle, because, from

Eq. (4), we have q ¼ ½1; vu=2� for u small.)

When the application is quadrature, it is natural to evaluate

the function and to compute the metric factor jpj�4
at the
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Table 1

Coverings of orientation space. N is the number of orientations; a is the covering

radius (expressed as a rotation), and c is the coverage, Eq. (24)

N a c Notes

24 62:80� a 1.579 Vertices of 2 24-cells, a 7-designb

60 44:48� c 1.445 Vertices of 600-cell, an 11-designb

360 27:78� 2.152 Vertices and cells of 600-celld

50 69:66� 4.426 ZCW3_50e

538 32:53� 5.142 ZCW3_538e

6044 18:10� 10.051 ZCW3_6044e

1 5:499=
ffiffiffiffi
N3
p

8.821f Cubic lattice in tesseractg

1 4:472=
ffiffiffiffi
N3
p

4.745h Body-centered cubic lattice in tesseractg

1 4:092=
ffiffiffiffi
N3
p

3.635i Cubic lattice in 48-cellj

1 3:328=
ffiffiffiffi
N3
p

1.956k Body-centered cubic lattice in 48-cellj

648 20:83� 1.641 c48u27l (d ¼ 0:33582)

7416 10:07� 2.133 c48u309l (d ¼ 0:15846)

70728 4:71� 2.078 c48u2947l (d ¼ 0:07359)

1 3:022=
ffiffiffiffi
N3
p

1.464m Uniform body-centered cubic latticen

a cos �1 1
4
ð2

ffiffiffi
2
p
� 1Þ

� 	
.

b See Ref. [43].
c cos �1 1

8
ð3

ffiffiffi
5
p
� 1Þ

� 	
.

d 60 vertices with weight 1.32870 and 300 cell centers with weight 0.93426.
e Euler angles for orientations taken from Ref. [39].
f 16

ffiffiffi
3
p

=p.
g Ratio of maximum to minimum weights is 16.
h 20

ffiffiffi
5
p

=ð3pÞ.
i 224

ffiffiffi
3
p

=½ð17þ 12
ffiffiffi
2
p
Þp�.

j Ignoring boundary effects, ratio of maximum to minimum weights is

64=ð17þ 12
ffiffiffi
2
p
Þ ¼ 1:884.

k 280
ffiffiffi
5
p

=½3ð17þ 12
ffiffiffi
2
p
Þp�.

l Body-centered cubic lattice in a 48-cell with lattice spacing d; see Ref. [46].
m 5

ffiffiffi
5
p

p=24.
n Conjectured thinnest covering for N!1, based on optimal covering of R3

[47].
centers of the grid cubes. For binning, we assign the samples to

the grid cube in the obvious way and again use the grid center to

compute the metric factor to obtain a sample density.

The cubical grid defined above is suitable for quadrature and

searching where the cost of function evaluations is small.

Sometimes, however, the cost of function evaluations is so high

that it is desirable to find an ‘‘optimal’’ set of grid points. For

integrations over S2, this is a well-studied problem [40] and

various integration grid have been given that ensure accuracy to

high order [41]. For S3, various spherical t-designs are known

[42,43]. A t-design is a set of points on the sphere such that the

average of a polynomial of degree t over the sphere is given by

averaging the values of polynomial at those points. Unfortu-

nately t-designs for S3 are only known for t up to 11 with the

11-design corresponding to 60 orientations.

In order to provide a denser coverage of the sphere we

propose the following strategy: consider N sample orientations,

corresponding to 2N points on S3. Define a ‘‘covering radius’’,

a, as the maximum rotation needed to align an arbitrary

orientation with one of the sample orientations. The ‘‘cover-

age’’, c, is defined by the ratio of the area of 2N spherical caps

of rotational extent a to the total area of S3, i.e.,

c ¼ Nða� sin aÞ
p

(24)

[compare with Eq. (23b)]. For a given N, the optimal config-

uration of sample orientations is obtained by minimizing a—

this gives the ‘‘thinnest’’ coverage, c. Finally, we weight each

sample point according to the fraction of orientational space

which is closest to it (i.e., in proportion to the volumes of the

Voronoi cells); and we set a secondary goal of minimizing the

variation in the weights. We expect the resulting sample points

and weights to provide robust and accurate estimates of orien-

tational integrals—particularly of experimentally or numeri-

cally determined functions which are bounded but which may

not have bounded derivatives. The sample points are also

suitable for searching orientation space optimally. Finding such

optimal sets of points is difficult in practice. So, here, we

propose some sets based on the regular 4-dimensional poly-

topes [44,45], with the results summarized in Table 1.

The 24-orientation set is obtained by placing two 24-cells (or

icositetrachora) in their mutually dual configurations to give the

set

8 permutations of ½	1; 0; 0; 0�; (25a)

16 permutations of

�
	 1

2
;	 1

2
;	 1

2
;	 1

2

�
; (25b)

24 permutations of

�
	 1ffiffiffi

2
p ;	 1ffiffiffi

2
p ; 0; 0

�
: (25c)

(Each orientation is counted twice here because of the identi-

fication of 	q.) The corresponding Voronoi tessellation is a

truncated-cubic tetracontaoctachoron (or 48-cell) which con-

sists of 48 regular truncated cubes [48]. The set of orientations,

Eq. (25), is the direct symmetry group for the cube.
The vertices of the 600-cell (or hexacosichoron) [45] are

given by Eqs. (25a) and (25b) together with

96 even permutations of

�
	

ffiffiffi
5
p
þ 1

4
;	

ffiffiffi
5
p
� 1

4
;	 1

2
; 0

�
:

In this case, the Voronoi tessellation is the dual of the 600-cell,

namely the 120-cell (or hecatonicosachoron). Because the

Voronoi cells are dodecahedra which are nearly spherical,

the resulting 60 orientations gives a particularly thin covering

of orientation space. A good covering is also provided by

adding the centers of the tetrahedral cells of the 600-cell.

For comparison, we list in Table 1 the data for some of the

ZCW3 orientation sets used by Edén and Levitt [39]. These are

obtained by taking sets of points appropriate for integrating of a

periodic unit cube [49–51] and mapping this set to the space of

three Euler angles. There are two potential problems with this

approach: (1) even though the metric of orientation space is

treated properly, the mapping from Euler angles to orientation

space is not distance-preserving and we expect this to degrade

the properties of a mesh and (2) because one of the Euler angles

is not periodic, functions in orientation space do not obey the

constraints assumed in constructing the sets of sample points.

(More complete data for the ZCW3 sets is available in [46].)

Finally, Table 1 provides various strategies for constructing

an arbitrarily fine grid. We start with gridding the tesseract on
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which we easily impose a cubical grid (see above). However,

the optimal sphere covering of R3 is body-centered cubic [47],

and such a grid results in a thinner covering. Still better

coverings can be found by starting with the 48-cell which has a

typical cell (a truncated cube),

p0 ¼ 1; j pi 6¼ 0j �
ffiffiffi
2
p
� 1; j p1j þ j p2j þ j p3j � 1: (26)

The other cells are obtained by multiplying p by the members

of Eq. (25). A cubic or body-centered cubic grid can easily be

placed within each cell. For example, a body-centered lattice

can be obtained with

p0 ¼ 1; p ¼ ½k; l;m�d=2;

subject to the constraint Eq. (26), where k, l, and m are either all

even integers or all odd integers. Table 1 gives three examples

of such grids. The disadvantage of grids in 48-cells is that care

must be taken to treat the faces of the cell correctly. The

triangular faces of the truncated cubes slice cut through the

grid cells at an angle and the octagonal faces fit together with a

45� twist. It is therefore necessary to resort to numerical

methods to determine the volume of the Voronoi cells near

the faces. The resulting data for the weights and examples of

other body-centered cubic grids in the 48-cell with a� 0:65�

are given in [46].

One special searching problem is determining the volume of

the smallest rectangular box (whose edges are parallel to the

coordinate axes) into which a given molecule fits. This problem

arises in the study of a single protein bathed in a solvent. In

order to eliminate boundary effects, it is possible to construct a

periodic system and, for efficiency, we wish the volume of the

periodic cell to be minimum. We can solve this problem by

systematically sampling over all orientations using our grid.

However, because of the symmetries of a cube, Eq. (25), there

are 24 equivalent orientations which minimize the volume and

we can restrict the search to 1=24 of orientation space by

searching only in Eq. (26). We should point out that for the

purposes of mimicking a single solute molecule in a solvent

with a periodic system, the ‘‘best’’ computational box is not

given by fitting a single image of the solute into a box but rather

by the more challenging problem of optimally fitting the solute

molecules into its neighboring images [52].

The emphasis in the section is on covering all orientation

space with a grid. In many molecular modeling applications, the

orientation may be quite restricted, e.g., when considering the

orientation of a ligand in a protein binding pocket, and we may

elect to restrict the integration (or search) to a set of orientations

which differ from the mean rotation by at most Q. If we express

the deviation from the mean as a turn vector, Eq. (23),

integrations may be carried out in (3-dimensional) turn space

with the range of integration restricted to the ball

juj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ� sin QÞ=p3

p
. Because the mapping to turn space

is volume preserving, the integrals are exact. In addition,

provided that Q9p=2, the mapping to turn space entails little

distortion (9 12%) and standard numerical methods for

integrating in a ball B3 can be used.
9. Discussion

Quaternions are an ideal ‘‘fiducial’’ representation [53] of

orientation in a molecular simulation. They provide an

economical format for program input and output and as the

internal representation of orientation. There is little redundancy

in the representation—there is just the normalization constraint

on its four elements and this is easily tested and corrected. At a

given numerical precision, quaternions cover orientation space

uniformly. Most operations involving orientation can be carried

out directly and efficiently with quaternions and they can be

converted to other representations as needed. The basic

operation of composing rotations is most cheaply performed

with quaternions. On the other hand, if we need to rotate a large

molecule it is quicker to convert the quaternion to a rotation

matrix, Eq. (8), and to perform matrix-vector multiplication

than to apply Eq. (5) directly.

In comparison, other representation suffer serious draw-

backs. Rotations cannot be easily composed when expressed as

Euler angles. Picking a random orientation is more awkward

when rotation matrices are used. In neither of these

representations is it easy to interpolate between two orienta-

tions or to compute the mean orientation.

Although quaternions may be unfamiliar to some readers,

we only needed to use quaternion algebra in the rule for

composing rotations and in deriving the least-squares fit. In

carrying out the other tasks, we just used the fact that rotations

are represented by opposite points on S3 and this provides a

‘‘natural’’ metric for rotations. In working with S3, we are able

to carry over geometrical concepts from S2 or use straightfor-

ward extensions from Euclidean space, R3, to R4.

A curious and non-obvious property of rotations which is

evident from their representation on S3, with 	q identified, is

that rotations do not form a simply connected group. Thus, if we

rotate an object by 360� it returns to its original orientation but

with the sign of q changed. This means that we cannot

continuously deform the path that the object took to reduce it to

a point. However, we can do this if we rotate the object by 720�.
This property of rotations is an immediate consequence of their

representation as a pair of points 	q on S3 and good visual

illustrations of this property are provided by the Dirac belt trick

[54] and the Phillipine wine dance [55].
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